Preparation of Refractory Materials from Ferronickel Slag

被引:17
作者
Gu, Foquan [1 ]
Peng, Zhiwei [1 ]
Tang, Huimin [1 ]
Ye, Lei [1 ]
Tian, Weiguang [2 ]
Liang, Guoshen [2 ]
Rao, Mingjun [1 ]
Zhang, Yuanbo [1 ]
Li, Guanghui [1 ]
Jiang, Tao [1 ]
机构
[1] Cent S Univ, Sch Minerals Proc & Bioengn, Changsha 410083, Hunan, Peoples R China
[2] Guangdong Guangqing Met Technol Co Ltd, Yangjiang 529500, Guangdong, Peoples R China
来源
CHARACTERIZATION OF MINERALS, METALS, AND MATERIALS 2018 | 2018年
关键词
Ferronickel slag; Refractory material; Sintering; Forsterite; COMPRESSIVE STRENGTH; FINE AGGREGATE;
D O I
10.1007/978-3-319-72484-3_67
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The amount of slag produced from a typical ferronickel smelting process is 4 to 6 times that of the metal product, and handling this slag is a huge challenge to the ferronickel industry. The feasibility of a technological route for preparing refractory materials from a ferronickel slag was verified in this study. Based on the thermodynamics analysis, the effect of the sintering temperature on the properties of refractory material from the slag was studied in the presence of magnesia. The results of thermodynamics calculation showed that the reaction of MgO with SiO2 generated forsterite and enstatite, whereas the reaction between MgO and Fe2O3/Al2O3 produced corresponding magnesia spinels. The experimental results showed that a refractory material with refractoriness of 1580 degrees C, bulk density of 2.88 g/cm(3), compressive strength of 106.9 MPa, and apparent porosity of 5.8% was obtained under the conditions of magnesia addition of 15 wt %, sintering temperature of 1350 degrees C and sintering time of 3 h. With increasing sintering temperature, the bulk density and the compressive strength of refractory material increased but the apparent porosity decreased, mainly attributed to the formation of the liquid phase which promoted the densification of the refractory material.
引用
收藏
页码:633 / 642
页数:10
相关论文
共 17 条
[1]  
Balomenos E, 2013, P 3 INT SLAG VAL S L, P72
[2]   High-alumina cement production from FeNi-ERF slag, limestone and diasporic bauxite [J].
Dourdounis, E ;
Stivanakis, V ;
Angelopoulos, GN ;
Chaniotakis, E ;
Frogoudakis, E ;
Papanastasiou, D ;
Papamantellos, DC .
CEMENT AND CONCRETE RESEARCH, 2004, 34 (06) :941-947
[3]  
Fidancevska E., 2007, J U CHEM TECHNOLOGY, V42, P285
[4]   Preparation of forsterite refractory using highly abundant amorphous rice husk silica for thermal insulation [J].
Hossain, S. K. S. ;
Mathur, Lakshya ;
Singh, Preetam ;
Majhi, Manas Ranjan .
JOURNAL OF ASIAN CERAMIC SOCIETIES, 2017, 5 (02) :82-87
[5]   Utilization of Ferronickel Slag as Additive in Portland Cement: A Hydration Leaching Study [J].
Katsiotis, N. S. ;
Tsakiridis, P. E. ;
Velissariou, D. ;
Katsiotis, M. S. ;
Alhassan, S. M. ;
Beazi, M. .
WASTE AND BIOMASS VALORIZATION, 2015, 6 (02) :177-189
[6]  
Kirillidi Y, 2005, PROC INT CONF ENV SC, pA768
[7]   Effect of synthesis parameters on the compressive strength of low-calcium ferronickel slag inorganic polymers [J].
Komnitsas, Kostas ;
Zaharaki, Dimitra ;
Perdikatsis, Vasillios .
JOURNAL OF HAZARDOUS MATERIALS, 2009, 161 (2-3) :760-768
[8]   Hydration study of ternary blended cements containing ferronickel slag and natural pozzolan [J].
Lemonis, N. ;
Tsakiridis, P. E. ;
Katsiotis, N. S. ;
Antiohos, S. ;
Papageorgiou, D. ;
Katsiotis, M. S. ;
Beazi-Katsioti, M. .
CONSTRUCTION AND BUILDING MATERIALS, 2015, 81 :130-139
[9]   Synthesis process of forsterite refractory by iron ore tailings [J].
LI, Jing ;
WANG, Qi ;
LIU, Jihui ;
LI, Peng .
Journal of Environmental Sciences, 2009, 21 (SUPPL. 1) :S92-S95
[10]   Synthesis of ferronickel slag-based geopolymers [J].
Maragkos, Ioannis ;
Giannopoulou, Ioanna P. ;
Panias, Dimitrios .
MINERALS ENGINEERING, 2009, 22 (02) :196-203