Global Dynamics Above the Ground State for the Nonlinear Klein-Gordon Equation Without a Radial Assumption

被引:37
作者
Nakanishi, K. [1 ]
Schlag, W. [2 ]
机构
[1] Kyoto Univ, Dept Math, Kyoto 6068502, Japan
[2] Univ Chicago, Dept Math, Chicago, IL 60615 USA
基金
美国国家科学基金会;
关键词
DEFINED SCATTERING OPERATORS; STABLE MANIFOLDS; WELL-POSEDNESS; BLOW-UP; SCHRODINGER; INSTABILITY; EXISTENCE; DECAY;
D O I
10.1007/s00205-011-0462-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We extend our result Nakanishi and Schlag in J. Differ. Equ. 250(5):2299-2333, 2011) to the non-radial case, giving a complete classification of global dynamics of all solutions with energy that is at most slightly above that of the ground state for the nonlinear Klein-Gordon equation with the focusing cubic nonlinearity in three space dimensions.
引用
收藏
页码:809 / 851
页数:43
相关论文
共 38 条
[31]  
Nakanishi K, 2011, ZUR LECT ADV MATH, P1, DOI 10.4171/095
[32]   SADDLE POINTS AND INSTABILITY OF NONLINEAR HYPERBOLIC EQUATIONS [J].
PAYNE, LE ;
SATTINGER, DH .
ISRAEL JOURNAL OF MATHEMATICS, 1975, 22 (3-4) :273-303
[33]   LOW-ENERGY SCATTERING FOR NONLINEAR KLEIN-GORDON EQUATIONS [J].
PECHER, H .
JOURNAL OF FUNCTIONAL ANALYSIS, 1985, 63 (01) :101-122
[34]   Stable manifolds for an orbitally unstable nonlinear Schrodinger equation [J].
Schlag, W. .
ANNALS OF MATHEMATICS, 2009, 169 (01) :139-227
[35]   UNSTABLE GROUND-STATE OF NONLINEAR KLEIN-GORDON EQUATIONS [J].
SHATAH, J .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1985, 290 (02) :701-710
[36]  
Strauss W.A, 1989, CBMS REGIONAL C SERI, V73
[37]   EXISTENCE OF SOLITARY WAVES IN HIGHER DIMENSIONS [J].
STRAUSS, WA .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1977, 55 (02) :149-162
[38]   MODULATIONAL STABILITY OF GROUND-STATES OF NONLINEAR SCHRODINGER-EQUATIONS [J].
WEINSTEIN, MI .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1985, 16 (03) :472-491