Activation of a flavin monooxygenase gene YUCCA7 enhances drought resistance in Arabidopsis

被引:113
作者
Lee, Minyoung [1 ]
Jung, Jae-Hoon [1 ]
Han, Doo-Yeol [2 ]
Seo, Pil Joon [1 ]
Park, Woong June [2 ]
Park, Chung-Mo [1 ,3 ]
机构
[1] Seoul Natl Univ, Dept Chem, Seoul 151742, South Korea
[2] Dankook Univ, Inst Nanosensor & Biotechnol, Dept Mol Biol, Brain Korea Grad Program RNA Biol 21, Yongin 448701, South Korea
[3] Seoul Natl Univ, Plant Genom & Breeding Inst, Seoul 151742, South Korea
基金
新加坡国家研究基金会;
关键词
Arabidopsis; Auxin biosynthesis; Drought; Flavin monooxygenase; Root growth; YUC7; AUXIN BIOSYNTHESIS; ABSCISIC-ACID; PLANT DEVELOPMENT; RT-PCR; STRESS; TOLERANCE; THALIANA; EXPRESSION; ROOT; FAMILY;
D O I
10.1007/s00425-011-1552-3
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Auxin regulates diverse molecular and physiological events at the cellular and organismal levels during plant growth and development in response to environmental stimuli. It acts either through distinct signaling pathways or in concert with other growth hormones. Its biological functions are adjusted by modulating biosynthesis, conjugate formation, and polar transport and distribution. Several tryptophan-dependent and -independent auxin biosynthetic pathways have been proposed. Recent studies have shown that a few flavin monooxygenase enzymes contribute to the tryptophan-dependent auxin biosynthesis. Here, we show that activation of a flavin monooxygenase gene YUCCA7 (YUC7), which belongs to the tryptophan-dependent auxin biosynthetic pathway, enhances drought resistance. An Arabidopsis activation-tagged mutant yuc7-1D exhibited phenotypic changes similar to those observed in auxin-overproducing mutants, such as tall, slender stems and curled, narrow leaves. Accordingly, endogenous levels of total auxin were elevated in the mutant. The YUC7 gene was induced by drought, primarily in the roots, in an abscisic acid (ABA)-dependent manner. The yuc7-1D mutant was resistant to drought, and drought-responsive genes, such as RESPONSIVE TO DESSICATION 29A (RD29A) and COLD-REGULATED 15A (COR15A), were up-regulated in the mutant. Interestingly, whereas stomatal aperture and production of osmoprotectants were not discernibly altered, lateral root growth was significantly promoted in the yuc7-1D mutant when grown under drought conditions. These observations support that elevation of auxin levels in the roots enhances drought resistance possibly by promoting root growth.
引用
收藏
页码:923 / 938
页数:16
相关论文
共 63 条
  • [1] Hormonal changes in relation to biomass partitioning and shoot growth impairment in salinized tomato (Solanum lycopersicum L.) plants
    Albacete, Alfonso
    Ghanem, Michel Edmond
    Martinez-Andujar, Cristina
    Acosta, Manuel
    Sanchez-Bravo, Jose
    Martinez, Vicente
    Lutts, Stanley
    Dodd, Ian C.
    Perez-Alfocea, Francisco
    [J]. JOURNAL OF EXPERIMENTAL BOTANY, 2008, 59 (15) : 4119 - 4131
  • [2] The SUR2 gene of Arabidopsis thaliana encodes the cytochrome P450CYP83B1, a modulator of auxin homeostasis
    Barlier, I
    Kowalczyk, M
    Marchant, A
    Ljung, K
    Bhalerao, R
    Bennett, M
    Sandberg, G
    Bellini, C
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (26) : 14819 - 14824
  • [3] Bartel Bonnie, 1997, Annu Rev Plant Physiol Plant Mol Biol, V48, P51, DOI 10.1146/annurev.arplant.48.1.51
  • [4] Auxin: The looping star in plant development
    Benjamins, Rene
    Scheres, Ben
    [J]. ANNUAL REVIEW OF PLANT BIOLOGY, 2008, 59 : 443 - 465
  • [5] BOERJAN W, 1995, PLANT CELL, V7, P1405, DOI 10.1105/tpc.7.9.1405
  • [6] The fitness costs to plants of resistance to pathogens
    Burdon, JJ
    Thrall, PH
    [J]. GENOME BIOLOGY, 2003, 4 (09)
  • [7] Disruption of the cellulose synthase gene, AtCesA8/IRX1, enhances drought and osmotic stress tolerance in Arabidopsis
    Chen, ZZ
    Hong, XH
    Zhang, HR
    Wang, YQ
    Li, X
    Zhu, JK
    Gong, ZZ
    [J]. PLANT JOURNAL, 2005, 43 (02) : 273 - 283
  • [8] Auxin synthesized by the YUCCA flavin Monooxygenases is essential for embryogenesis and leaf formation in Arabidopsis
    Cheng, Youfa
    Dai, Xinhua
    Zhao, Yunde
    [J]. PLANT CELL, 2007, 19 (08) : 2430 - 2439
  • [9] Auxin biosynthesis by the YUCCA flavin monooxygenases controls the formation of floral organs and vascular tissues in Arabidopsis
    Cheng, Youfa
    Dai, Xinhua
    Zhao, Yunde
    [J]. GENES & DEVELOPMENT, 2006, 20 (13) : 1790 - 1799
  • [10] Floral dip:: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana
    Clough, SJ
    Bent, AF
    [J]. PLANT JOURNAL, 1998, 16 (06) : 735 - 743