Spin-Orbit Torque and Dipole Coupling for Nanomagnetic Array Programmability

被引:2
作者
Nance, John A. [1 ]
Roxy, Kawsher A. [2 ]
Bhanja, Sanjukta [2 ]
Carman, Greg P. [1 ]
机构
[1] Univ Calif Los Angeles, Dept Mech & Aerosp Engn, Los Angeles, CA 90095 USA
[2] Univ S Florida, Dept Elect Engn, Tampa, FL 33620 USA
基金
美国国家科学基金会;
关键词
Array programmability; dipole coupling; spin-orbit torque (SOT); spintronics; FIELD;
D O I
10.1109/TMAG.2020.2995514
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Computational architectures that rely on an array of dipole-coupled nanomagnetic elements require an energy-efficient method of programming individual elements within the array. As a low-energy, selective method of controlling magnetization, spin-orbit torque (SOT) represents a promising solution. Here, a finite-difference micromagnetic model is used to characterize the dipole coupling between adjacent CoFeB nanodisks and to determine the critical SOT current required to switch these disks. Additionally, a phase plot showing disk dimensions at which both vortex and single-domain in-plane magnetic states are stable is produced. A dipole-coupled array's response to dynamic application of SOT current is also simulated. The results show that the rate of applying SOT current to one element in the array strongly influences the stable states of adjacent elements and that the SOT current amplitude required for this influence is an order of magnitude lower than the previously determined critical switching current. This indicates that SOT current dynamics play a significant role in the behavior of a dipole-coupled array. Finally, an architecture to achieve programmability in nanomagnetic computational platforms with SOT is presented.
引用
收藏
页数:8
相关论文
共 30 条
  • [1] [Anonymous], NEUR NETW IJCN 2013
  • [2] Becherer M., 2009, IEEE INT SOL STAT CI, P471
  • [3] Bhanja S, 2016, NAT NANOTECHNOL, V11, P177, DOI [10.1038/nnano.2015.245, 10.1038/NNANO.2015.245]
  • [4] Bhowmik D, 2014, NAT NANOTECHNOL, V9, P59, DOI [10.1038/NNANO.2013.241, 10.1038/nnano.2013.241]
  • [5] Investigation of Defects and Errors in Nanomagnetic Logic Circuits
    Carlton, David
    Lambson, Brian
    Scholl, Andreas
    Young, Anthony
    Ashby, Paul
    Dhuey, Scott
    Bokor, Jeffrey
    [J]. IEEE TRANSACTIONS ON NANOTECHNOLOGY, 2012, 11 (04) : 760 - 762
  • [6] Single-domain circular nanomagnets
    Cowburn, RP
    Koltsov, DK
    Adeyeye, AO
    Welland, ME
    Tricker, DM
    [J]. PHYSICAL REVIEW LETTERS, 1999, 83 (05) : 1042 - 1045
  • [7] Csaba G., 2012, Nanotechnology (IEEE-NANO), 2012 12th IEEE Conference on, P1, DOI DOI 10.1109/NANO.2012.6322201
  • [8] Spin-orbit torque magnetization switching of a three-terminal perpendicular magnetic tunnel junction
    Cubukcu, Murat
    Boulle, Olivier
    Drouard, Marc
    Garello, Kevin
    Avci, Can Onur
    Miron, Ioan Mihai
    Langer, Juergen
    Ocker, Berthold
    Gambardella, Pietro
    Gaudin, Gilles
    [J]. APPLIED PHYSICS LETTERS, 2014, 104 (04)
  • [9] Demidov VE, 2012, NAT MATER, V11, P1028, DOI [10.1038/NMAT3459, 10.1038/nmat3459]
  • [10] Fan YB, 2014, NAT MATER, V13, P699, DOI [10.1038/nmat3973, 10.1038/NMAT3973]