Development of vacuum ultraviolet spectroscopy for measuring edge impurity emission in the EAST tokamak

被引:6
作者
Zhang Hongming [1 ]
Lyu Bo [1 ]
He Liang [1 ,2 ]
Shen Yongcai [3 ]
Chen Jun [4 ]
Fu Jia [1 ]
Bin Bin [1 ,3 ]
Wang Xunyu [1 ]
Wang Fudi [1 ]
Li Yingying [1 ]
Zhang Ling [1 ]
Liu Bing [5 ]
机构
[1] Chinese Acad Sci, Inst Plasma Phys, Hefei 230031, Peoples R China
[2] Univ South China, Sch Nucl Sci & Technol, Hengyang 421001, Peoples R China
[3] Anqing Normal Univ, Sch Phys & Elect Engn, Anqing 246011, Peoples R China
[4] Univ Sci & Technol China, Dept Engn & Appl Phys, Hefei 230026, Peoples R China
[5] Southwestern Jiaotong Univ, Inst Fus Sci, Sch Phys Sci & Technol, Chengdu 610031, Peoples R China
基金
中国国家自然科学基金;
关键词
EAST tokamak; impurity tungsten; vacuum ultraviolet spectroscopy; edge impurity emission; plasma diagnostics; SPECTROMETER;
D O I
10.1088/2058-6272/ab81a4
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The dominant wavelength range of edge impurity emissions moves from the visible range to the vacuum ultraviolet (VUV) range, as heating power increasing in the Experimental Advanced Superconducting Tokamak (EAST). The measurement provided by the existing visible spectroscopies in EAST is not sufficient for impurity transport studies for high-parameters plasmas. Therefore, in this study, a VUV spectroscopy is newly developed to measure edge impurity emissions in EAST. One Seya-Namioka VUV spectrometer (McPherson 234/302) is used in the system, equipped with a concave-corrected holographic grating with groove density of 600 grooves mm(-1). Impurity line emissions can be observed in the wavelength range of lambda = 50-700 nm, covering VUV, near ultraviolet and visible ranges. The observed vertical range is Z = -350-350 mm. The minimum sampling time can be set to 5 ms under full vertical binning (FVB) mode. VUV spectroscopy has been used to measure the edge impurity emission for the 2019 EAST experimental campaign. Impurity spectra are identified for several impurity species, i.e., lithium (Li), carbon (C), oxygen (O), and iron (Fe). Several candidates for tungsten (W) lines are also measured but their clear identification is very difficult due to a strong overlap with Fe lines. Time evolutions of impurity carbon emissions of CII at 134.5 nm and CIII at 97.7 nm are analyzed to prove the system capability of time-resolved measurement. The measurements of the VUV spectroscopy are very helpful for edge impurity transport study in the high-parameters plasma in EAST.
引用
收藏
页数:6
相关论文
共 18 条
  • [1] VUV spectroscopic study of a localized impurity source in Tore Supra ergodic divertor plasmas
    De Michelis, C
    Hogan, J
    Monier-Garbet, P
    Becoulet, M
    Guirlet, R
    Hess, W
    Schunke, B
    Vallet, JC
    [J]. PLASMA PHYSICS AND CONTROLLED FUSION, 2002, 44 (07) : 1393 - 1410
  • [2] Chapter 2: Plasma confinement and transport
    Department of Electrical Engineering, PSTI, University of California, Los Angeles, CA, United States
    不详
    不详
    不详
    不详
    不详
    不详
    不详
    不详
    不详
    不详
    不详
    不详
    不详
    不详
    不详
    不详
    不详
    不详
    [J]. Nucl Fusion, 2007, 6 (S18-S127): : S18 - S127
  • [3] A spatially scanning vacuum ultraviolet and visible range spectrometer for spectroscopy of tokamak plasmas in ASDEX-Upgrade
    Field, AR
    Fink, J
    Dux, R
    Fussmann, G
    Wenzel, U
    Schumacher, U
    [J]. REVIEW OF SCIENTIFIC INSTRUMENTS, 1995, 66 (12) : 5433 - 5441
  • [4] IMPURITIES IN TOKAMAKS
    ISLER, RC
    [J]. NUCLEAR FUSION, 1984, 24 (12) : 1599 - 1678
  • [5] Application of the VUV and the soft x-ray systems on JET for the study of intrinsic impurity behavior in neon seeded hybrid discharges
    Krawczyk, N.
    Czarnecka, A.
    Ivanova-Stanik, I.
    Zagorski, R.
    Challis, C.
    Frigione, D.
    Giroud, C.
    Graves, J.
    Mantsinen, M. J.
    Silburn, S.
    Abduallev, S.
    Abhangi, M.
    Abreu, P.
    Afzal, M.
    Aggarwal, K. M.
    Ahlgren, T.
    Ahn, J. H.
    Aho-Mantila, L.
    Aiba, N.
    Airila, M.
    Albanese, R.
    Aldred, V.
    Alegre, D.
    Alessi, E.
    Aleynikov, P.
    Alfier, A.
    Alkseev, A.
    Allinson, M.
    Alper, B.
    Alves, E.
    Ambrosino, G.
    Ambrosino, R.
    Amicucci, L.
    Amosov, V.
    Sunden, E. Andersson
    Angelone, M.
    Anghel, M.
    Angioni, C.
    Appel, L.
    Appelbee, C.
    Arena, P.
    Ariola, M.
    Arnichand, H.
    Arshad, S.
    Ash, A.
    Ashikawa, N.
    Aslanyan, V.
    Asunta, O.
    Auriemma, F.
    Austin, Y.
    [J]. REVIEW OF SCIENTIFIC INSTRUMENTS, 2018, 89 (10)
  • [6] A multichannel visible spectroscopy system for the ITER- like W divertor on EAST
    Mao, Hongmin
    Ding, Fang
    Luo, Guang-Nan
    Hu, Zhenhua
    Chen, Xiahua
    Xu, Feng
    Yang, Zhongshi
    Chen, Jingbo
    Wang, Liang
    Ding, Rui
    Zhang, Ling
    Gao, Wei
    Xu, Jichan
    Wu, Chengrui
    [J]. REVIEW OF SCIENTIFIC INSTRUMENTS, 2017, 88 (04)
  • [7] THEORY OF THE CONCAVE GRATING .3. SEYA-NAMIOKA MONOCHROMATOR
    NAMIOKA, T
    [J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA, 1959, 49 (10) : 951 - 961
  • [8] DESIGN OF HOLOGRAPHIC CONCAVE GRATINGS FOR SEYA-NAMIOKA MONOCHROMATORS
    NODA, H
    NAMIOKA, T
    SEYA, M
    [J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA, 1974, 64 (08) : 1043 - 1048
  • [9] Line spectrum and ion temperature measurements from tungsten ions at low ionization stages in large helical device based on vacuum ultraviolet spectroscopy in wavelength range of 500-2200 Å
    Oishi, T.
    Morita, S.
    Huang, X. L.
    Zhang, H. M.
    Goto, M.
    [J]. REVIEW OF SCIENTIFIC INSTRUMENTS, 2014, 85 (11)
  • [10] Oishi T., 2015, Plasma Fusion Res, V10, DOI [10.1585/pfr.10.3402031, DOI 10.1585/PFR.10.3402031]