Some common fixed point theorems for weakly compatible mappings

被引:35
作者
Ciric, LB
Ume, JS
机构
[1] Fac Mech Engn, Belgrade, Serbia Monteneg
[2] Changwon Natl Univ, Dept Appl Math, Chang Won 641773, South Korea
关键词
common fixed point; metrically convex metric space;
D O I
10.1016/j.jmaa.2005.04.007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Jungck's [G. Jungck, Compatible mappings and common fixed points, Int. J. Math. Math. Sci. 9 (1986) 771-779] notion of compatible mappings is further extended and used to prove some common fixed point theorems for weakly compatible non-self mappings in complete convex metric spaces. We improve on the method of proof used by Rhoades [B.E. Rhoades, A fixed point theorem for non-self set-valued mappings, Int. J. Math. Math. Sci. 20 (1997) 9-12] and Ahmed and Rhoades [A. Ahmed, B.E. Rhoades, Some common fixed point theorems for compatible mappings, Indian J. Pure Appl. Math. 32 (2001) 1247-1254] and obtain generalization of some known results. In particular, a theorem by Rhoades [B.E. Rhoades, A fixed point theorem for non-self set-valued mappings, Int. J. Math. Math. Sci. 20 (1997) 9-12] is generalized and improved. (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:488 / 499
页数:12
相关论文
共 25 条
[1]   Some common fixed point theorems for non-self hybrid contractions [J].
Ahmed, A ;
Khan, AR .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1997, 213 (01) :275-286
[2]  
Ahmed MA, 2001, INDIAN J PURE AP MAT, V32, P1247
[3]   FIXED-POINT THEOREMS FOR SET-VALUED MAPPINGS OF CONTRACTIVE TYPE [J].
ASSAD, NA ;
KIRK, WA .
PACIFIC JOURNAL OF MATHEMATICS, 1972, 43 (03) :553-562
[4]  
Assad NA., 1973, B UNIONE MAT ITAL, V7, P1
[5]  
Ciric L.B., 1972, Mat. Vesnik., V9, P265
[6]   On some nonself mappings [J].
Ciric, LJB ;
Ume, JS ;
Khan, MS ;
Pathak, HK .
MATHEMATISCHE NACHRICHTEN, 2003, 251 :28-33
[7]  
Ciric LjB., 1993, INT J MATH MATH SCI, V16, P397
[8]  
Ciric LjB., 1998, B ACAD SERBE SCI ART, V23, P25
[9]  
Hadzic O, 1989, U NOVOM SADU ZB RA M, V19, P233
[10]  
Itoh S., 1977, COMMENT MATH U CAROL, V18, P247