Fire retardant synergisms between nanometric Fe2O3 and aluminum phosphinate in poly(butylene terephthalate)

被引:111
作者
Gallo, E. [1 ,2 ]
Schartel, B. [1 ]
Braun, U. [1 ]
Russo, P. [2 ]
Acierno, D. [2 ]
机构
[1] BAM Fed Inst Mat Res & Testing, D-12205 Berlin, Germany
[2] Univ Naples Federico 2, Dept Mat & Prod Engn, I-80125 Naples, Italy
关键词
poly(butylene terephthalate) (PBT); flammability; metal oxide; nanocomposite; aluminum diethylphosphinate; REINFORCED POLY(1,4-BUTYLENE TEREPHTHALATE); FLAME RETARDANCY; THERMOPLASTIC POLYESTERS; THERMAL-DECOMPOSITION; MELAMINE CYANURATE; RED PHOSPHORUS; NANOCOMPOSITES; COMBINATION; COMBUSTION; MECHANISMS;
D O I
10.1002/pat.1774
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
The pyrolysis and the flame retardancy of poly(butylene terephthalate) (PBT) containing aluminum diethylphosphinate (AlPi) and nanometric Fe2O3 were investigated using thermal analysis, evolved gas analysis (Thermogravimetry-FTIR), flammability tests (LOI, UL 94), cone calorimeter measurements and chemical analysis of residue (FTIR). AlPi mainly acts as a flame inhibitor in the gas phase, through the release of diethylphosphinic acid. A small amount of Fe2O3 in PBT promotes the formation of a carbonaceous char in the condensed phase. The combination of 5 and 8 wt% AlPi, respectively, with 2 wt% metal oxides achieves V-0 classification in the UL 94 test thanks to complementary action mechanisms. Using PBT/metal oxide nanocomposites shows a significant increase in the flame retardancy efficiency of AlPi in PBT and thus opens the route to surprisingly sufficient additive contents as low as 7 wt%. Copyright (C) 2010 John Wiley & Sons, Ltd.
引用
收藏
页码:2382 / 2391
页数:10
相关论文
共 43 条
[1]  
Aufmuth W, 1999, FIRE MATER, V23, P1, DOI 10.1002/(SICI)1099-1018(199901/02)23:1<1::AID-FAM660>3.0.CO
[2]  
2-K
[3]   Structure of the condensed phase and char of fire-retarded PBT nanocomposites by TGA/ATR in N2 [J].
Bakirtzis, D. ;
Ramani, A. ;
Delichatsios, M. A. ;
Zhang, J. .
FIRE SAFETY JOURNAL, 2009, 44 (08) :1023-1029
[4]   Fire retardant and charring effect of poly(sulfonyldiphenylene phenylphosphonate) in poly(butylene terephthalate) [J].
Balabanovich, AI ;
Engelmann, J .
POLYMER DEGRADATION AND STABILITY, 2003, 79 (01) :85-92
[5]   Fire retardance in poly(butylene terephthalate). The effects of red phosphorus and radiation-induced cross-links [J].
Balabanovich, AL ;
Zevaco, TA ;
Schnabel, W .
MACROMOLECULAR MATERIALS AND ENGINEERING, 2004, 289 (02) :181-190
[6]   Layered silicate polymer nanocomposites: new approach or illusion for fire retardancy? Investigations of the potentials and the tasks using a model system [J].
Bartholmai, M ;
Schartel, B .
POLYMERS FOR ADVANCED TECHNOLOGIES, 2004, 15 (07) :355-364
[7]   A comparative study on the thermo-oxidative degradation of poly(ether-esters) [J].
Botelho, G ;
Queirós, A ;
Gijsman, P .
POLYMER DEGRADATION AND STABILITY, 2001, 73 (03) :431-435
[8]   Flame retardancy mechanisms of metal phosphinates and metal phosphinates in combination with melamine cyanurate in glass-fiber reinforced poly(1,4-butylene terephthalate): the influence of metal cation [J].
Braun, Ulrike ;
Bahr, Horst ;
Sturm, Heinz ;
Schartel, Bernhard .
POLYMERS FOR ADVANCED TECHNOLOGIES, 2008, 19 (06) :680-692
[9]   Flame retardancy mechanisms of aluminium phosphinate in combination with melamine cyanurate in glass-fibre-reinforced poly(1,4-butylene terephthalate) [J].
Braun, Ulrike ;
Schartel, Bernhard .
MACROMOLECULAR MATERIALS AND ENGINEERING, 2008, 293 (03) :206-217
[10]   Flame retardancy mechanisms of aluminium phosphinate in combination with melamine polyphosphate and zinc borate in glass-fibre reinforced polyamide 6,6 [J].
Braun, Ulrike ;
Schartel, Bernhard ;
Fichera, Mario A. ;
Jaeger, Christian .
POLYMER DEGRADATION AND STABILITY, 2007, 92 (08) :1528-1545