Paralemmin-1, a modulator of filopodia induction is required for spine maturation

被引:40
作者
Arstikaitis, Pamela [1 ]
Gauthier-Campbell, Catherine [1 ]
Gutierrez Herrera, Rosario Carolina [3 ]
Huang, Kun [1 ]
Levinson, Joshua N. [1 ]
Murphy, Timothy H. [1 ]
Kilimann, Manfred W. [4 ]
Sala, Carlo [2 ]
Colicos, Michael A. [3 ]
El-Husseini, Alaa [1 ]
机构
[1] Univ British Columbia, Dept Psychiat, Vancouver, BC V6T 1Z3, Canada
[2] Univ Milan, Dept Pharmacol, CNR, Inst Neurosci, Milan, Italy
[3] Univ Calgary, Dept Physiol & Biophys, Hotchkiss Brain Inst, Calgary, AB T2N 4N1, Canada
[4] Uppsala Univ, Dept Cell & Mol Biol, S-75124 Uppsala, Sweden
关键词
D O I
10.1091/mbc.E07-08-0802
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Dendritic filopodia are thought to participate in neuronal contact formation and development of dendritic spines; however, molecules that regulate filopodia extension and their maturation to spines remain largely unknown. Here we identify paralemmin-1 as a regulator of filopodia induction and spine maturation. Paralemmin-1 localizes to dendritic membranes, and its ability to induce filopodia and recruit synaptic elements to contact sites requires protein acylation. Effects of paralemmin-1 on synapse maturation are modulated by alternative splicing that regulates spine formation and recruitment of AMPA-type glutamate receptors. Paralemmin-1 enrichment at the plasma membrane is subject to rapid changes in neuronal excitability, and this process controls neuronal activity-driven effects on protrusion expansion. Knockdown of paralemmin-1 in developing neurons reduces the number of filopodia and spines formed and diminishes the effects of Shank1b on the transformation of existing filopodia into spines. Our study identifies a key role for paralemmin-1 in spine maturation through modulation of filopodia induction.
引用
收藏
页码:2026 / 2038
页数:13
相关论文
共 49 条
[1]   Cell biology - A role for lipid shells in targeting proteins to caveolae, rafts, and other lipid domains [J].
Anderson, RGW ;
Jacobson, K .
SCIENCE, 2002, 296 (5574) :1821-1825
[2]   Paralemmin interacts with D3 dopamine receptors: Implications for membrane localization and cAMP signaling [J].
Basile, M ;
Lin, RW ;
Kabbani, N ;
Karpa, K ;
Kilimann, M ;
Simpson, I ;
Kester, M .
ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 2006, 446 (01) :60-68
[3]   Transforming activity of the Rho family GTPase, Wrch-1, a Wnt-regulated Cdc42 homolog, is dependent on a novel carboxyl-terminal palmitoylation motif [J].
Berzat, AC ;
Buss, JE ;
Chenette, EJ ;
Weinbaum, CA ;
Shutes, A ;
Der, CJ ;
Minden, A ;
Cox, AD .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2005, 280 (38) :33055-33065
[4]   AMPA receptor trafficking at excitatory synapses [J].
Bredt, DS ;
Nicoll, RA .
NEURON, 2003, 40 (02) :361-379
[5]   Structure of the human paralemmin gene (PALM), mapping to human chromosome 19p13.3 and mouse chromosome 10, and exclusion of coding mutations in grizzled, mocha, jittery, and hesitant mice [J].
Burwinkel, B ;
Miglierini, G ;
Jenne, DE ;
Gilbert, DJ ;
Copeland, NG ;
Jenkins, NA ;
Ring, HZ ;
Francke, U ;
Kilimann, MW .
GENOMICS, 1998, 49 (03) :462-466
[6]   Development and regulation of dendritic spine synapses [J].
Calabrese, B ;
Wilson, MS ;
Halpain, S .
PHYSIOLOGY, 2006, 21 :38-47
[7]   Palm is expressed in both developing and adult mouse lens and retina [J].
Castellini M. ;
Wolf L.V. ;
Chauhan B.K. ;
Galileo D.S. ;
Kilimann M.W. ;
Cvekl A. ;
Duncan M.K. .
BMC Ophthalmology, 5 (1)
[8]   Remodeling of synaptic actin induced by photoconductive stimulation [J].
Colicos, MA ;
Collins, BE ;
Sailor, MJ ;
Goda, Y .
CELL, 2001, 107 (05) :605-616
[9]   Neuronal networks and synaptic plasticity: understanding complex system dynamics by interfacing neurons with silicon technologies [J].
Colicos, Michael A. ;
Syed, Naweed I. .
JOURNAL OF EXPERIMENTAL BIOLOGY, 2006, 209 (12) :2312-2319
[10]  
Dailey ME, 1996, J NEUROSCI, V16, P2983