ISOCHRONICITY FOR TRIVIAL QUINTIC AND SEPTIC PLANAR POLYNOMIAL HAMILTONIAN SYSTEMS

被引:2
作者
Braun, Francisco [1 ]
Llibre, Jaume [2 ]
Mereu, Ana C. [3 ]
机构
[1] Univ Fed Sao Carlos, Dept Matemat, BR-13565905 Sao Carlos, SP, Brazil
[2] Univ Autonoma Barcelona, Dept Matemat, E-08193 Barcelona, Catalonia, Spain
[3] Univ Fed Sao Carlos, Dept Fis Quim & Matemat, BR-18052780 Sorocaba, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
Isochronous centers; polynomial Hamiltonian systems; Jacobian conjecture; JACOBIAN CONJECTURE; CENTERS;
D O I
10.3934/dcds.2016029
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we completely characterize trivial polynomial Hamiltonian isochronous centers of degrees 5 and 7. Precisely, we provide simple formulas, up to linear change of coordinates, for the Hamiltonians of the form H = (f(1)(2) + f(2)(2)) /2, where f = ( f(1), f(2)) : R-2 -> R-2 is a polynomial map with det Df = 1, f(0, 0) = ( 0, 0) and the degree of f is 3 or 4.
引用
收藏
页码:5245 / 5255
页数:11
相关论文
共 8 条
[1]  
Baba K., 1977, OSAKA J MATH, V14, P403
[2]   Isochronicity for several classes of Hamiltonian systems [J].
Cima, A ;
Manosas, F ;
Villadelprat, J .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1999, 157 (02) :373-413
[3]   Nonexistence of isochronous centers in planar polynomial Hamiltonian systems of degree four [J].
Jarque, X ;
Villadelprat, J .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2002, 180 (02) :334-373
[4]   Isochronicity and linearizability of planar polynomial Hamiltonian systems [J].
Llibre, Jaume ;
Romanovski, Valery G. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2015, 259 (05) :1649-1662
[5]   Area-preserving normalizations for centers of planar Hamiltonian systems [J].
Mañosas, F ;
Villadelprat, J .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2002, 179 (02) :625-646
[6]  
MOH TT, 1983, J REINE ANGEW MATH, V340, P140
[7]   A connection between isochronous Hamiltonian centres and the Jacobian Conjecture [J].
Sabatini, M .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1998, 34 (06) :829-838
[8]  
van den Essen A., 2000, Progress in Mathematics