Linear Subspace Design for Real-Time Shape Deformation

被引:83
作者
Wang, Yu [1 ]
Jacobson, Alec [2 ,3 ]
Barbic, Jernej [4 ]
Kavan, Ladislav [1 ]
机构
[1] Univ Penn, Philadelphia, PA 19104 USA
[2] Columbia Univ, New York, NY 10027 USA
[3] Swiss Fed Inst Technol, Zurich, Switzerland
[4] Univ So Calif, Los Angeles, CA 90089 USA
来源
ACM TRANSACTIONS ON GRAPHICS | 2015年 / 34卷 / 04期
基金
美国国家科学基金会;
关键词
Deformation modeling; skinning; subspace methods; reduced-order physics; SURFACE; INTEGRATION; SPACE;
D O I
10.1145/2766952
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We propose a method to design linear deformation subspaces, unifying linear blend skinning and generalized barycentric coordinates. Deformation subspaces cut down the time complexity of variational shape deformation methods and physics-based animation (reduced-order physics). Our subspaces feature many desirable properties: interpolation, smoothness, shape-awareness, locality, and both constant and linear precision. We achieve these by minimizing a quadratic deformation energy, built via a discrete Laplacian inducing linear precision on the domain boundary. Our main advantage is speed: subspace bases are solutions to a sparse linear system, computed interactively even for generously tessellated domains. Users may seamlessly switch between applying transformations at handles and editing the subspace by adding, removing or relocating control handles. The combination of fast computation and good properties means that designing the right subspace is now just as creative as manipulating handles. This paradigm shift in handle-based deformation opens new opportunities to explore the space of shape deformations.
引用
收藏
页数:11
相关论文
共 61 条
  • [1] [Anonymous], ACM T GRAPH
  • [2] [Anonymous], 2011, ACM Transactions on Graphics, DOI DOI 10.1145/2010324.1964973
  • [3] [Anonymous], 2002, ACM T GRAPHIC
  • [4] Automatic rigging and animation of 3D characters
    Baran, Ilya
    Popovic, Jovan
    [J]. ACM TRANSACTIONS ON GRAPHICS, 2007, 26 (03):
  • [5] Real-time subspace integration for St. Venant-Kirchhoff deformable models
    Barbic, J
    James, D
    [J]. ACM TRANSACTIONS ON GRAPHICS, 2005, 24 (03): : 982 - 990
  • [6] Variational Harmonic Maps for Space Deformation
    Ben-Chen, Mirela
    Weber, Ofir
    Gotsman, Craig
    [J]. ACM TRANSACTIONS ON GRAPHICS, 2009, 28 (03):
  • [7] BOBACH T., 2006, P INT C VIS IM IM PR, P342
  • [9] Real-time shape editing using radial basis functions
    Botsch, M
    Kobbelt, L
    [J]. COMPUTER GRAPHICS FORUM, 2005, 24 (03) : 611 - 621
  • [10] BOTSCH M., 2004, ACM T GRAPHIC, V23, P3