Density control in ITER: an iterative learning control and robust control approach

被引:30
作者
Ravensbergen, T. [1 ,4 ]
de Vries, P. C. [2 ]
Felici, F. [1 ]
Blanken, T. C. [1 ]
Nouailletas, R. [3 ]
Zabeo, L. [2 ]
机构
[1] Eindhoven Univ Technol, Dept Mech Engn, Control Syst Technol Grp, POB 513, NL-5600 MB Eindhoven, Netherlands
[2] ITER Org, Route Vinon Sur Verdon,CS 90 046, F-13067 St Paul Les Durance, France
[3] CEA Cadarache, F-13108 St Paul Les Durance, France
[4] DIFFER Dutch Inst Fundamental Energy Res, De Zaale 20, NL-5612 AJ Eindhoven, Netherlands
关键词
plasma density control; ITER; robust control; feedforward control; pellet fuelling; gas fuelling; ramp-up; TORE-SUPRA; PROGRESS; PLANTS;
D O I
10.1088/1741-4326/aa95ce
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Plasma density control for next generation tokamaks, such as ITER, is challenging because of multiple reasons. The response of the usual gas valve actuators in future, larger fusion devices, might be too slow for feedback control. Both pellet fuelling and the use of feedforward-based control may help to solve this problem. Also, tight density limits arise during ramp-up, due to operational limits related to divertor detachment and radiative collapses. As the number of shots available for controller tuning will be limited in ITER, in this paper, iterative learning control (ILC) is proposed to determine optimal feedforward actuator inputs based on tracking errors, obtained in previous shots. This control method can take the actuator and density limits into account and can deal with large actuator delays. However, a purely feedforward-based density control may not be sufficient due to the presence of disturbances and shot-to-shot differences. Therefore, robust control synthesis is used to construct a robustly stabilizing feedback controller. In simulations, it is shown that this combined controller strategy is able to achieve good tracking performance in the presence of shot-to-shot differences, tight constraints, and model mismatches.
引用
收藏
页数:13
相关论文
共 26 条
[1]  
Belo P., 2015, 42 EPS C PLASM PHYS
[2]  
Blanken T. C., 2017, FUSION ENG DES
[3]   Using iterative learning control with basis functions to compensate medium deformation in a wide-format inkjet printer [J].
Bolder, Joost ;
Oomen, Tom ;
Koekebakker, Sjirk ;
Steinbuch, Maarten .
MECHATRONICS, 2014, 24 (08) :944-953
[4]   A survey of iterative learning control [J].
Bristow, Douglas A. ;
Tharayil, Marina ;
Alleyne, Andrew G. .
IEEE CONTROL SYSTEMS MAGAZINE, 2006, 26 (03) :96-114
[5]   Characterisation of plasma breakdown at JET with a carbon and ITER-like wall [J].
de Vries, P. C. ;
Sips, A. C. C. ;
Kim, H. T. ;
Lomas, P. J. ;
Maviglia, F. ;
Albanese, R. ;
Coffey, I. ;
Joffrin, E. ;
Lehnen, M. ;
Manzanares, A. ;
O'Mulane, M. ;
Nunes, I. ;
van Rooij, G. ;
Rimini, F. G. ;
Stamp, M. F. .
NUCLEAR FUSION, 2013, 53 (05)
[6]   Simulations of ITER start-up and assessment of limiter power loads [J].
Federici, G. ;
Zolotukhin, O. ;
Kobayashi, M. ;
Loarte, A. ;
Strohmayer, G. ;
Tanga, A. ;
Portone, A. ;
Horton, L. ;
Feng, Y. ;
Sardei, F. ;
Gribov, Y. ;
Shimada, M. ;
Polevoi, A. ;
Mitteau, R. ;
Lowry, C. .
JOURNAL OF NUCLEAR MATERIALS, 2007, 363 :346-352
[7]  
Felici F., 2015, IEEE CDC C OS JAP DE
[8]   Progress in ergodic divertor operation on Tore Supra [J].
Ghendrih, P ;
Bécoulet, M ;
Colas, L ;
Grosman, A ;
Guirlet, R ;
Gunn, J ;
Loarer, T ;
Azéroual, A ;
Basiuk, V ;
Beaumont, B ;
Bécoulet, A ;
Beyer, P ;
Brémond, S ;
Bucalossi, J ;
Capes, H ;
Corre, Y ;
Costanzo, L ;
De Michelis, C ;
Devynck, P ;
Féron, S ;
Friant, C ;
Garbet, X ;
Giannella, R ;
Grisolia, C ;
Hess, W ;
Hogan, J ;
Ladurelle, L ;
Laugier, F ;
Martin, G ;
Mattioli, M ;
Meslin, B ;
Monier-Garbet, P ;
Moulin, D ;
Nguyen, F ;
Pascal, JY ;
Pecquet, AL ;
Pégourié, B ;
Reichle, R ;
Saint-Laurent, R ;
Vallet, JC ;
Zabiégo, M .
NUCLEAR FUSION, 2002, 42 (10) :1221-1250
[9]   Density limits in toroidal plasmas [J].
Greenwald, M .
PLASMA PHYSICS AND CONTROLLED FUSION, 2002, 44 (08) :R27-R80
[10]  
Gribov Y., 2008, P 24 INT C FUS EN SA