Experimental response of the divertor particle flux to internal transport barrier dynamics in EAST high-βN discharges

被引:5
|
作者
Long, F. F. [1 ,2 ]
Ming, T. F. [1 ]
Zhang, T. [1 ]
Meng, L. Y. [1 ,2 ]
Wu, M. Q. [3 ,4 ]
Xu, J. C. [1 ,2 ]
Gao, S. L. [1 ,2 ]
Ye, K. X. [1 ,2 ]
Zhou, F. [1 ,2 ]
Zhuang, Q. [1 ,2 ]
Zhu, X. [3 ,4 ]
Deng, G. Z. [1 ,2 ]
Li, K. [1 ,2 ]
Zhang, H. X. [1 ,2 ]
Zhong, F. B. [1 ,2 ]
Lian, H. [1 ,2 ]
Yang, Y. [1 ]
Liu, S. C. [1 ]
Wang, Y. M. [1 ]
Liu, X. J. [1 ]
Liu, H. Q. [1 ]
Zang, Q. [1 ]
Wang, L. [1 ]
Gao, X. [1 ,2 ,4 ]
机构
[1] Chinese Acad Sci, Inst Plasma Phys, Hefei 230031, Peoples R China
[2] Univ Sci & Technol China, Hefei 230026, Peoples R China
[3] Shenzhen Univ, Adv Energy Res Ctr, Shenzhen 518060, Peoples R China
[4] Shenzhen Univ, Key Lab Optoelect Devices & Syst, Minist Educ & Guangdong Prov, Coll Optoelect Engn, Shenzhen 518060, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
internal transport barrier; high normalized beta; divertor particle flux; Shafranov shift; tokamak; DENSITY PROFILE; TOKAMAK; SHEAR; EQUILIBRIUM; PLASMAS; PHYSICS; MODE; REFLECTOMETRY; STABILITY; OPERATION;
D O I
10.1088/1741-4326/ab668c
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Experiments in EAST have concentrated on studying the internal transport barrier (ITB) regime in high normalized beta () discharges, where the study of the compatibility between ITB dynamics and divertor plasmas is an important step for future steady-state and high-performance plasma operations. In this work, the characteristics of the divertor particle flux and their responses to ITB dynamics have been studied in high- discharges. In order to describe the characteristics, the ITB duration is divided into two phases: phase I (i.e. ITB formation) and phase II (i.e. ITB degradation), according to the variation of plasma stored energy. In phase I, the particle flux near the inner strike point (SP) is continuously enhanced during the inter-edge-localized mode (ELM) phase in both the lower single-null and upper single-null configurations. The total particle flux in the scrape-off layer (SOL) region reveals a similar trend with an increase of the flux near the SP. However, in the private flux region (PFR) the total particle flux shows a reduction. Meanwhile, a movement of the SP away from the divertor corner is also observed during the ITB formation. In phase II, the particle flux near the inner SP, the total particle flux in the inner SOL and PFR region recover to their initial level before ITB formation, respectively. Additionally, the particle decay length is obviously reduced in phase I and then gradually enhanced in phase II. The continuous variation of the particle flux at the inner divertor target is in accordance with a compression of the magnetic flux surfaces due to ITB formation, which increases the gradient of electron density in the edge region. It is indicative that the ITB has a feasible impact on the behavior of divertor plasmas by means of increasing the Shafranov shift during the inter-ELM phase.
引用
收藏
页数:12
相关论文
共 7 条
  • [1] Modeling study of divertor particle and heat flux asymmetries for EAST H-mode discharges
    Deng, G. Z.
    Lin, X. D.
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [2] Experimental study of the core instability before and after internal transport barrier formation in EAST
    Wu, Mingfu
    Liu, Zixi
    Li, Gongshun
    Han, Xiang
    Zhang, Tao
    Li, Yingying
    Zhou, Tianfu
    Chao, Yan
    Wang, Shouxin
    Wu, Xiaohe
    Geng, Kangning
    Xiang, Haoming
    Zhong, Fubin
    Ye, Kaixuan
    Huang, Jia
    Zhou, Zhen
    Yang, Shuqi
    Wen, Fei
    Wang, Yumin
    Zhang, Shoubiao
    Zhuang, Ge
    Gao, Xiang
    NUCLEAR FUSION, 2023, 63 (01)
  • [3] Effects of radial transport on divertor power and particle flux widths under different operational regimes in EAST
    Deng, G. Z.
    Xu, X. Q.
    Liu, X. J.
    Xu, J. C.
    Meng, L. Y.
    Liu, J. B.
    Li, N. M.
    Schmitz, L.
    Gao, S. L.
    Yang, Q. Q.
    Ye, Y.
    Xia, T. Y.
    Liu, S. C.
    Ming, T. F.
    Xu, G. S.
    Lin, X. D.
    Li, G. Q.
    Gao, X.
    Wang, L.
    NUCLEAR FUSION, 2021, 61 (10)
  • [4] Dynamics of electron internal transport barrier formation at the H-L transition on EAST
    Han, X.
    Liu, Y.
    Zhou, T. F.
    Zhang, T.
    Shi, T. H.
    Li, Y. Y.
    Yuan, Y.
    Mao, S. T.
    Jin, Y. F.
    Wu, X. H.
    Wang, S. X.
    Yang, Y.
    Wen, F.
    Huang, J.
    Liu, S. C.
    Ye, K. X.
    Wu, M. F.
    Geng, K. N.
    Li, G. S.
    Zhong, F. B.
    Xiang, H. M.
    Gao, X.
    NUCLEAR FUSION, 2022, 62 (06)
  • [5] Investigation of energy transport in DIII-D High-βP EAST-demonstration discharges with the TGLF turbulent and NEO neoclassical transport models
    Pan, C.
    Staebler, G. M.
    Lao, L. L.
    Garofalo, A. M.
    Gong, X.
    Ren, Q.
    McClenaghan, J.
    Li, G.
    Ding, S.
    Qian, J.
    Wan, B.
    Xu, G. S.
    Solomon, W.
    Meneghini, O.
    Smith, S. P.
    NUCLEAR FUSION, 2017, 57 (03)
  • [6] Simulation of the alpha particle heating and the helium ash source in an International Thermonuclear Experimental Reactor-like tokamak with an internal transport barrier
    Ye, Lei
    Guo, Wenfeng
    Xiao, Xiaotao
    Dai, Zongliang
    Wang, Shaojie
    PHYSICS OF PLASMAS, 2014, 21 (12)
  • [7] Key issues for long-pulse high-βN operation with the Experimental Advanced Superconducting Tokamak (EAST)
    Gao, Xiang
    Yang, Yao
    Zhang, Tao
    Liu, Haiqing
    Li, Guoqiang
    Ming, Tingfeng
    Liu, Zixi
    Wang, Yumin
    Zeng, Long
    Han, Xiang
    Liu, Yukai
    Wu, Muquan
    Qu, Hao
    Shen, Biao
    Zang, Qing
    Yu, Yaowei
    Kong, Defeng
    Gao, Wei
    Zhang, Ling
    Cai, Huishan
    Wu, Xuemei
    Hanada, K.
    Zhong, Fubin
    Liang, Yunfeng
    Hu, Chundong
    Liu, Fukun
    Gong, Xianzhu
    Xiao, Bingjia
    Wan, Baonian
    Zhang, Xiaodong
    Li, Jiangang
    NUCLEAR FUSION, 2017, 57 (05)