One-step side-by-side 3D printing constructing linear full batteries

被引:10
作者
Ding, Junwei [1 ,2 ]
Zheng, Huaiyang [2 ]
Ji, Xiaoyan [1 ]
机构
[1] Lulea Univ Technol, Div Energy Sci, Energy Engn, S-97187 Lulea, Sweden
[2] Zhengzhou Univ Light Ind, Coll Mat & Chem Engn, Zhengzhou 450002, Peoples R China
关键词
ELECTROCHEMICAL ENERGY-STORAGE; LITHIUM-ION BATTERIES; HIGH-PERFORMANCE;
D O I
10.1039/d2cc00915c
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A one-step side-by-side 3D printing method is proposed to construct linear lithium-, sodium-, and zinc-ion full batteries with high electrochemical performance. The inks of the battery components present shear thinning characteristics and can be printed on different substrates. This approach to design high performance linear full batteries is a general strategy.
引用
收藏
页码:5241 / 5244
页数:4
相关论文
共 35 条
[1]   3D-printing technologies for electrochemical applications [J].
Ambrosi, Adriano ;
Pumera, Martin .
CHEMICAL SOCIETY REVIEWS, 2016, 45 (10) :2740-2755
[2]   A review of the development of full cell lithium-ion batteries: The impact of nanostructured anode materials [J].
Balogun, Muhammad-Sadeeq ;
Qiu, Weitao ;
Luo, Yang ;
Meng, Hui ;
Mai, Wenjie ;
Onasanya, Amos ;
Olaniyi, Titus K. ;
Tong, Yexiang .
NANO RESEARCH, 2016, 9 (10) :2823-2851
[3]   3D Printable Ceramic-Polymer Electrolytes for Flexible High-Performance Li-Ion Batteries with Enhanced Thermal Stability [J].
Blake, Aaron J. ;
Kohlmeyer, Ryan R. ;
Hardin, James O. ;
Carmona, Eric A. ;
Maruyama, Benji ;
Berrigan, John Daniel ;
Huang, Hong ;
Durstock, Michael F. .
ADVANCED ENERGY MATERIALS, 2017, 7 (14)
[4]   3D printing of hybrid MoS2-graphene aerogels as highly porous electrode materials for sodium ion battery anodes [J].
Brown, Emery ;
Yan, Pengli ;
Tekik, Halil ;
Elangovan, Ayyappan ;
Wang, Jian ;
Lin, Dong ;
Li, Jun .
MATERIALS & DESIGN, 2019, 170
[5]   Comprehensive Evaluation of Bile Acid Homeostasis in Human Hepatocyte Co-Culture in the Presence of Troglitazone, Pioglitazone, and Acetylsalicylic Acid [J].
Chang, Jae H. ;
Sangaraju, Dewakar ;
Liu, Ning ;
Jaochico, Allan ;
Plise, Emile .
MOLECULAR PHARMACEUTICS, 2019, 16 (10) :4230-4240
[6]   3D Printed Lithium-Metal Full Batteries Based on a High-Performance Three-Dimensional Anode Current Collector [J].
Chen, Chenglong ;
Li, Shaopeng ;
Notten, Peter H. L. ;
Zhang, Yuehua ;
Hao, Qingli ;
Zhang, Xiaogang ;
Lei, Wu .
ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (21) :24785-24794
[7]   Constructing an interspace in MnO@NC microspheres for superior lithium ion battery anodes [J].
Chen, Feiran ;
Liu, Zheng ;
Yu, Nan ;
Sun, Hongxia ;
Geng, Baoyou .
CHEMICAL COMMUNICATIONS, 2021, 57 (83) :10951-10954
[8]   Elevated-Temperature 3D Printing of Hybrid Solid-State Electrolyte for Li-Ion Batteries [J].
Cheng, Meng ;
Jiang, Yizhou ;
Yao, Wentao ;
Yuan, Yifei ;
Deivanayagam, Ramasubramonian ;
Foroozan, Tara ;
Huang, Zhennan ;
Song, Boao ;
Rojaee, Ramin ;
Shokuhfar, Tolou ;
Pan, Yayue ;
Lu, Jun ;
Shahbazian-Yassar, Reza .
ADVANCED MATERIALS, 2018, 30 (39)
[9]   3D printing-enabled advanced electrode architecture design [J].
Chu, Tiankuo ;
Park, Soyeon ;
Fu, Kun .
CARBON ENERGY, 2021, 3 (03) :424-439
[10]   Unlocking the Potential of Disordered Rocksalts for Aqueous Zinc-Ion Batteries [J].
Ding, Junwei ;
Du, Zhiguo ;
Li, Bin ;
Wang, Lizhen ;
Wang, Shiwen ;
Gong, Yongji ;
Yang, Shubin .
ADVANCED MATERIALS, 2019, 31 (44)