The Cauchy problem for the modified two-component Camassa-Holm system in critical Besov space

被引:8
作者
Yan, Wei [1 ]
Li, Yongsheng [2 ]
机构
[1] Henan Normal Univ, Coll Math & Informat Sci, Xinxiang 453007, Henan, Peoples R China
[2] S China Univ Technol, Dept Math, Guangzhou 510640, Guangdong, Peoples R China
来源
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE | 2015年 / 32卷 / 02期
关键词
Cauchy problem; Modified two-component Camassa-Holm system; Critical Besov space; Osgood Lemma; GLOBAL WEAK SOLUTIONS; BOUNDARY VALUE-PROBLEMS; SHALLOW-WATER EQUATION; WELL-POSEDNESS; WAVE BREAKING; STABILITY;
D O I
10.1016/j.anihpc.2014.01.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we are concerned with the Cauchy problem for the modified two-component Camassa-Holm system in the Besov space with data having critical regularity. The key elements in our paper are the real interpolations and logarithmic interpolation among inhomogeneous Besov space and Lemma 5.2.1 of [7] which is also called Osgood Lemma and the Fatou Lemma. The new ingredient that we introduce in this paper can be seen on pages 453-457. (C) 2014 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:443 / 469
页数:27
相关论文
共 46 条
[1]  
BAHOURI H, 2011, FOURIER ANAL NONLINE
[2]   Global dissipative solutions of the Camassa-Holm equation [J].
Bressan, Alberto ;
Constantin, Adrian .
ANALYSIS AND APPLICATIONS, 2007, 5 (01) :1-27
[3]   Global conservative solutions of the Camassa-Holm equation [J].
Bressan, Alberto ;
Constantin, Adrian .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2007, 183 (02) :215-239
[4]   AN INTEGRABLE SHALLOW-WATER EQUATION WITH PEAKED SOLITONS [J].
CAMASSA, R ;
HOLM, DD .
PHYSICAL REVIEW LETTERS, 1993, 71 (11) :1661-1664
[5]  
Cheman J. - Y., 2004, PHASE SPACE ANAL PAR, V1, P53
[6]  
Chemin J.-Y., 1998, OXFORD LECT SER MATH, V14
[7]  
Constantin, 1998, ANN SC NORM SUPER PI, V26, P303
[8]  
Constantin A, 2000, COMMUN PUR APPL MATH, V53, P603
[9]   Geodesic flow on the diffeomorphism group of the circle [J].
Constantin, A ;
Kolev, B .
COMMENTARII MATHEMATICI HELVETICI, 2003, 78 (04) :787-804
[10]   Wave breaking for nonlinear nonlocal shallow water equations [J].
Constantin, A ;
Escher, J .
ACTA MATHEMATICA, 1998, 181 (02) :229-243