The Growth Rate of DNA Condensate Droplets Increases with the Size of Participating Subunits

被引:19
作者
Agarwal, Siddharth [1 ]
Osmanovic, Dino [1 ]
Klocke, Melissa A. [1 ]
Franco, Elisa [1 ,2 ]
机构
[1] Univ Calif Los Angeles, Dept Mech & Aerosp Engn, Los Angeles, CA 90024 USA
[2] Univ Calif Los Angeles, Bioengn, Los Angeles, CA 90024 USA
基金
美国国家科学基金会;
关键词
phase separation; DNA nanotechnology; biomolecular materials; programmable materials; condensates; PHASE-SEPARATION; KINETICS;
D O I
10.1021/acsnano.2c00084
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Liquid-liquid phase separation (LLPS) is a common phenomenon underlying the formation of dynamic membraneless organelles in biological cells, which are emerging as major players in controlling cellular functions and health. The bottom-up synthesis of biomolecular liquid systems with simple constituents, like nucleic acids and peptides, is useful to understand LLPS in nature as well as to develop programmable means to build new amorphous materials with properties matching or surpassing those observed in natural condensates. In particular, understanding which parameters determine condensate growth kinetics is essential for the synthesis of condensates with the capacity for active, dynamic behaviors. Here we use DNA nanotechnology to study artificial liquid condensates through programmable star-shaped subunits, focusing on the effects of changing subunit size. First, we show that LLPS is achieved in a 6-fold range of subunit size. Second, we demonstrate that the rate of growth of condensate droplets scales with subunit size. Our investigation is supported by a general model that describes how coarsening and coalescence are expected to scale with subunit size under ideal assumptions. Beyond suggesting a route toward achieving control of LLPS kinetics via design of subunit size in synthetic liquids, our work suggests that particle size may be a key parameter in biological condensation processes.
引用
收藏
页码:11842 / 11851
页数:10
相关论文
共 35 条
  • [1] Agarwal, 2022, BIORXIV, DOI [10.1101/2022.03.29.48631, DOI 10.1101/2022.03.29.48631]
  • [2] Biomolecular condensates at the nexus of cellular stress, protein aggregation disease and ageing
    Alberti, Simon
    Hyman, Anthony A.
    [J]. NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2021, 22 (03) : 196 - 213
  • [3] Phase transition of RNA-protein complexes into ordered hollow condensates
    Alshareedah, Ibraheem
    Moosa, Mahdi Muhammad
    Raju, Muralikrishna
    Potoyan, Davit A.
    Banerjee, Priya R.
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2020, 117 (27) : 15650 - 15658
  • [4] Aumiller WM, 2016, NAT CHEM, V8, P129, DOI [10.1038/NCHEM.2414, 10.1038/nchem.2414]
  • [5] Biomolecular condensates: organizers of cellular biochemistry
    Banani, Salman F.
    Lee, Hyun O.
    Hyman, Anthony A.
    Rosen, Michael K.
    [J]. NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2017, 18 (05) : 285 - 298
  • [6] Compositional Control of Phase-Separated Cellular Bodies
    Banani, Salman F.
    Rice, Allyson M.
    Peeples, William B.
    Lin, Yuan
    Jain, Saumya
    Parker, Roy
    Rosen, Michael K.
    [J]. CELL, 2016, 166 (03) : 651 - 663
  • [7] Kinetics and morphology of phase separation in fluids: The role of droplet coalescence
    Beysens, DA
    [J]. PHYSICA A, 1997, 239 (1-3): : 329 - 339
  • [8] Phase behavior and critical activated dynamics of limited-valence DNA nanostars
    Biffi, Silvia
    Cerbino, Roberto
    Bomboi, Francesca
    Paraboschi, Elvezia Maria
    Asselta, Rosanna
    Sciortino, Francesco
    Bellini, Tommaso
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2013, 110 (39) : 15633 - 15637
  • [9] Spontaneous driving forces give rise to protein-RNA condensates with coexisting phases and complex material properties
    Boeynaems, Steven
    Holehouse, Alex S.
    Weinhardt, Venera
    Kovacs, Denes
    Van Lindt, Joris
    Larabell, Carolyn
    Van Den Bosch, Ludo
    Das, Rhiju
    Tompa, Peter S.
    Pappu, Rohit, V
    Gitler, Aaron D.
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2019, 116 (16) : 7889 - 7898
  • [10] Amphiphilic-DNA Platform for the Design of Crystalline Frameworks with Programmable Structure and Functionality
    Brady, Ryan A.
    Brooks, Nicholas J.
    Fodera, Vito
    Cicuta, Pietro
    Di Michele, Lorenzo
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2018, 140 (45) : 15384 - 15392