Subcellular alterations of protein kinase C isozymes in the rat brain after organophosphate poisoning

被引:9
作者
Bloch-Shilderman, E [1 ]
Kadar, T [1 ]
Levy, A [1 ]
Sahar, R [1 ]
Rabinovitz, I [1 ]
Gilat, E [1 ]
机构
[1] Israel Inst Biol Res, Dept Pharmacol, IL-74100 Ness Ziona, Israel
关键词
D O I
10.1124/jpet.105.083469
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
The protein kinase C (PKC) signaling pathway has been associated with modulation of N-metyl-D-aspartate receptor activity, motor behavior, learning, and memory, all of which are severely impaired in organophosphate (OP) intoxication. Nevertheless, the role of PKC in OP intoxication is largely unknown. The present study attempted to characterize alterations in the immunoreactivity levels of PKC isozymes expressed in different brain areas in the rat following exposure to the nerve agent sarin (1 x LD50). Furthermore, possible neuroprotective effect of selective PKC regulating peptide after such insult was evaluated. The results indicated that a significant reduction in the immunoreactivity level of the conventional beta II-PKC and the atypical zeta-PKC was observed in frontal cortex up to 24 h postsarin and in the striatum up to 5 days postsarin exposure. This reduction was in contrast to the increase in the immunoreactivity level of both isozymes seen in the hippocampus or thalamus. Treatment with the anticonvulsant midazolam (0.5 mg/kg) 10 min postsarin exposure markedly reduced zeta-PKC immunoreactivity level and beta II-PKC in the membrane fractions in the hippocampus. beta II-PKC peptide (380 ng/kg), known to inhibit PKC translocation and activation, attenuated sarin-induced neuropathology. These observations suggest a role for both conventional and atypical PKC isozymes in OP-induced neuropathy in the rat and further support their involvement in cell death.
引用
收藏
页码:1082 / 1089
页数:8
相关论文
共 40 条
[1]   Coordinate regulation of metabotropic glutamate receptors [J].
Alagarsamy, S ;
Sorensen, SD ;
Conn, PJ .
CURRENT OPINION IN NEUROBIOLOGY, 2001, 11 (03) :357-362
[2]  
BODJARIAN N, 1992, NEUROTOXICOLOGY, V13, P715
[3]  
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
[4]   Protein kinase C δ mediates cerebral reperfusion injury in vivo [J].
Bright, R ;
Raval, AP ;
Dembner, JM ;
Pérez-Pinzón, MA ;
Steinberg, GK ;
Yenari, MA ;
Mochly-Rosen, D .
JOURNAL OF NEUROSCIENCE, 2004, 24 (31) :6880-6888
[5]   Opposing cardioprotective actions and parallel hypertrophic effects of δPKC and εPKC [J].
Chen, L ;
Hahn, H ;
Wu, GY ;
Chen, CH ;
Liron, T ;
Schechtman, D ;
Cavallaro, G ;
Banci, L ;
Guo, YR ;
Bolli, R ;
Dorn, GW ;
Mochly-Rosen, D .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (20) :11114-11119
[6]   SUSTAINED DENDRITIC GRADIENTS OF CA-2+ INDUCED BY EXCITATORY AMINO-ACIDS IN CA1 HIPPOCAMPAL-NEURONS [J].
CONNOR, JA ;
WADMAN, WJ ;
HOCKBERGER, PE ;
WONG, RKS .
SCIENCE, 1988, 240 (4852) :649-653
[7]  
Durkin JP, 1996, J NEUROCHEM, V66, P951
[8]   DOWN-REGULATION OF PROTEIN KINASE-C PROTECTS CEREBELLAR GRANULE NEURONS IN PRIMARY CULTURE FROM GLUTAMATE-INDUCED NEURONAL DEATH [J].
FAVARON, M ;
MANEV, H ;
SIMAN, R ;
BERTOLINO, M ;
SZEKELY, AM ;
DEERAUSQUIN, G ;
GUIDOTTI, A ;
COSTA, E .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1990, 87 (05) :1983-1987
[9]   INHIBITORS OF PROTEIN-KINASE-C PREVENT THE TOXICITY OF GLUTAMATE IN PRIMARY NEURONAL CULTURES [J].
FELIPO, V ;
MINANA, MD ;
GRISOLIA, S .
BRAIN RESEARCH, 1993, 604 (1-2) :192-196
[10]  
GILAT E, 2004, IN PRESS BIOSCI REV