PROPERTY OF SOLUTIONS FOR ELLIPTIC EQUATION INVOLVING THE HIGHER-ORDER FRACTIONAL LAPLACIAN IN R+n

被引:0
作者
Yu, Mei [1 ,2 ]
Zhang, Xia [3 ]
Zhang, Binlin [4 ]
机构
[1] Northwestern Polytech Univ, Sch Math & Stat, Xian 710129, Peoples R China
[2] Yeshiva Univ, Dept Math, New York, NY 10033 USA
[3] Harbin Inst Technol, Dept Math, Harbin 150001, Peoples R China
[4] Shandong Univ Sci & Technol, Coll Math & Syst Sci, Qingdao 266590, Peoples R China
基金
中国国家自然科学基金;
关键词
Higher-order fractional Laplacian; Liouville theorem; method of moving planes; monotonicity; POSITIVE SOLUTIONS; LIOUVILLE THEOREM; UNIQUENESS; DIFFUSION; EXISTENCE; SYSTEMS;
D O I
10.3934/cpaa.2020157
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the following equation with the higher-order fractional Laplacian (-Delta)(s) for s = m + alpha/2: (-Delta)(s )u(x) = f(u(x)), x is an element of R-+(n), where m is an element of N*, 0 < alpha < 2. By developing a narrow region principle in unbounded domain and establishing a equivalence of differential equation and integral equation, together with the method of moving planes, we deduce the monotonicity property of positive solutions and the Liouville theorem of nonnegative solutions.
引用
收藏
页码:3597 / 3612
页数:16
相关论文
共 30 条
[1]  
[Anonymous], 1972, Grundlehren math. Wiss.
[2]  
Applebaum D., 2009, LEVY PROCESSES STOCH, V2
[3]   ELLIPTIC-EQUATIONS WITH NEARLY CRITICAL GROWTH [J].
ATKINSON, FV ;
PELETIER, LA .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1987, 70 (03) :349-365
[4]  
Bertoin Jean, 1998, Levy processes
[5]  
Bisci GM, 2016, ENCYCLOP MATH APPL, V162
[6]   ANOMALOUS DIFFUSION IN DISORDERED MEDIA - STATISTICAL MECHANISMS, MODELS AND PHYSICAL APPLICATIONS [J].
BOUCHAUD, JP ;
GEORGES, A .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1990, 195 (4-5) :127-293
[7]  
Br~ezis H., 1988, 03 LEID U MATH I
[8]   Positive solutions of nonlinear problems involving the square root of the Laplacian [J].
Cabre, Xavier ;
Tan, Jinggang .
ADVANCES IN MATHEMATICS, 2010, 224 (05) :2052-2093
[9]  
Caffarelli LA, 2010, ANN MATH, V171, P1903
[10]   Representation Formulae for Solutions to Some Classes of Higher Order Systems and Related Liouville Theorems [J].
Caristi, Gabriella ;
D'Ambrosio, Lorenzo ;
Mitidieri, Enzo .
MILAN JOURNAL OF MATHEMATICS, 2008, 76 (01) :27-67