Module-phase synchronization of fractional-order complex chaotic systems based on RBF neural network and sliding mode control

被引:6
作者
Nian, Fuzhong [1 ]
Liu, Xinmeng [1 ]
Zhang, Yaqiong [1 ]
Yu, Xuelong [1 ]
机构
[1] Lanzhou Univ Technol, Sch Comp & Commun, Lanzhou 730050, Peoples R China
来源
INTERNATIONAL JOURNAL OF MODERN PHYSICS B | 2020年 / 34卷 / 07期
基金
中国国家自然科学基金;
关键词
RBF neural network; sliding mode control; fractional-order complex chaotic systems; synchronization; TIME;
D O I
10.1142/S0217979220500502
中图分类号
O59 [应用物理学];
学科分类号
摘要
Combined with RBF neural network and sliding mode control, the synchronization between drive system and response system was achieved in module space and phase space, respectively (module-phase synchronization). The RBF neural network is used to estimate the unknown nonlinear function in the system. The module-phase synchronization of two fractional-order complex chaotic systems is implemented by the Lyapunov stability theory of fractional-order systems. Numerical simulations are provided to show the effectiveness of the analytical results.
引用
收藏
页数:21
相关论文
共 31 条
[1]   The Shortest Synchronization Time with Optimal Fractional Order Value Using a Novel Chaotic Attractor Based on Secure Communication [J].
Durdu, Ali ;
Uyaroglu, Yilmaz .
CHAOS SOLITONS & FRACTALS, 2017, 104 :98-106
[2]  
Fang L., 2013, ADAPTIVE SYNCHRONIZA
[3]  
Fu J., 2019, IEEE T CONTROL NETWO, V1
[4]   The synchronization of chaotic systems based on RBF network in the presence of perturbation [J].
Guan, XP ;
Fan, ZP ;
Peng, HP ;
Wang, YQ .
ACTA PHYSICA SINICA, 2001, 50 (09) :1670-1674
[5]  
Kilbas A., 2006, Theory and Applications of Fractional Differential Equations, V24, DOI DOI 10.1016/S0304-0208(06)80001-0
[6]   Remarks on fractional derivatives [J].
Li, Changpin ;
Deng, Weihua .
APPLIED MATHEMATICS AND COMPUTATION, 2007, 187 (02) :777-784
[7]   Anti-synchronization and intermittent anti-synchronization of two identical hyperchaotic Chua systems via impulsive control [J].
Li, Hong-Li ;
Jiang, Yao-Lin ;
Wang, Zuo-Lei .
NONLINEAR DYNAMICS, 2015, 79 (02) :919-925
[8]   Synchronization of uncertain fractional-order chaotic systems with time delay based on adaptive neural network control [J].
Lin Fei-Fei ;
Zeng Zhe-Zhao .
ACTA PHYSICA SINICA, 2017, 66 (09)
[9]  
Lin T. C., 2012, INT J INNOV COMPUT I, V8
[10]   Sliding-Mode Synchronization Control for Uncertain Fractional-Order Chaotic Systems with Time Delay [J].
Liu, Haorui ;
Yang, Juan .
ENTROPY, 2015, 17 (06) :4202-4214