Quantum Annealing for Large MIMO Downlink Vector Perturbation Precoding

被引:11
作者
Kasi, Srikar [1 ]
Singh, Abhishek Kumar [1 ]
Venturelli, Davide [2 ]
Jamieson, Kyle [1 ]
机构
[1] Princeton Univ, Princeton, NJ 08544 USA
[2] Univ Space Res Assoc, Washington, DC USA
来源
IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC 2021) | 2021年
基金
美国国家科学基金会;
关键词
Vector Perturbation; Downlink Precoding; Quantum Computation; Quantum Annealing; Optimization; MULTIANTENNA MULTIUSER COMMUNICATION;
D O I
10.1109/ICC42927.2021.9500557
中图分类号
TN [电子技术、通信技术];
学科分类号
0809 ;
摘要
In a multi-user system with multiple antennas at the base station, precoding techniques in the downlink broadcast channel allow users to detect their respective data in a noncooperative manner. Vector Perturbation Precoding (VPP) is a non-linear variant of transmit-side channel inversion that perturbs user data to achieve full diversity order. While promising, finding an optimal perturbation in VPP is known to be an NP-hard problem, demanding heavy computational support at the base station and limiting the feasibility of the approach to small MIMO systems. This work proposes a radically different processing architecture for the downlink VPP problem, one based on Quantum Annealing (QA), to enable the applicability of VPP to large MIMO systems. Our design reduces VPP to a quadratic polynomial form amenable to QA, then refines the problem coefficients to mitigate the adverse effects of QA hardware noise. We evaluate our proposed QA based VPP (QAVP) technique on a real Quantum Annealing device over a variety of design and machine parameter settings. With existing hardware, QAVP can achieve a BER of 10(-4) with 100 mu s compute time, for a 6x6 MIMO system using 64 QAM modulation at 32 dB SNR.
引用
收藏
页数:6
相关论文
共 19 条
  • [1] Adiabatic quantum computation
    Albash, Tameem
    Lidar, Daniel A.
    [J]. REVIEWS OF MODERN PHYSICS, 2018, 90 (01)
  • [2] Cai J, 2014, A practical heuristic for finding graph minors
  • [3] Cloud RAN for Mobile Networks-A Technology Overview
    Checko, Aleksandra
    Christiansen, Henrik L.
    Yan, Ying
    Scolari, Lara
    Kardaras, Georgios
    Berger, Michael S.
    Dittmann, Lars
    [J]. IEEE COMMUNICATIONS SURVEYS AND TUTORIALS, 2015, 17 (01) : 405 - 426
  • [4] D-Wave, 2019, D WAV SYST US MAN
  • [6] FINCKE U, 1985, MATH COMPUT, V44, P463, DOI 10.1090/S0025-5718-1985-0777278-8
  • [7] Modulo Loss Reduction for Vector Perturbation Systems
    Han, Hyeon-Seung
    Park, Seok-Hwan
    Lee, Sunho
    Lee, Inkyu
    [J]. IEEE TRANSACTIONS ON COMMUNICATIONS, 2010, 58 (12) : 3392 - 3396
  • [8] A vector-perturbation technique for near-capacity multiantenna multiuser communication - Part II: Perturbation
    Hochwald, BM
    Peel, CB
    Swindlehurst, AL
    [J]. IEEE TRANSACTIONS ON COMMUNICATIONS, 2005, 53 (03) : 537 - 544
  • [9] Kasi Srikar, 2020, P 26 ACM MOBICOM, P663
  • [10] Leveraging Quantum Annealing for Large MIMO Processing in Centralized Radio Access Networks
    Kim, Minsung
    Venturelli, Davide
    Jamieson, Kyle
    [J]. SIGCOMM '19 - PROCEEDINGS OF THE ACM SPECIAL INTEREST GROUP ON DATA COMMUNICATION, 2019, : 241 - 255