NONEXISTENCE OF GLOBAL SOLUTIONS FOR DIFFERENTIAL INEQUALITIES OF SOBOLEV TYPE

被引:0
作者
Jleli, Mohamed [1 ]
Samet, Bessem [1 ]
机构
[1] King Saud Univ, Coll Sci, Dept Math, Riyadh 11451, Saudi Arabia
关键词
Differential inequality of Sobolev type; nonlinear capacity method; global solution; nonexistence; EQUATIONS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article we study three differential inequalities of Sobolev type. Using Pokhozhaev's nonlinear capacity method, we provide sufficient conditions for the nonexistence of global nontrivial weak solutions to these problems.
引用
收藏
页数:9
相关论文
共 9 条
[1]   Nonlinear fractional differential equations of Sobolev type [J].
Alsaedi, Ahmed ;
Alhothuali, Mohammed S. ;
Ahmad, Bashir ;
Kerbal, Sebti ;
Kirane, Mokhtar .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2014, 37 (13) :2009-2016
[2]   Nonexistence of positive solutions to nonlinear nonlocal elliptic systems [J].
Dahmani, Z. ;
Karami, F. ;
Kerbal, S. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 346 (01) :22-29
[3]   Criticality for some evolution equations [J].
Guedda, M ;
Kirane, M .
DIFFERENTIAL EQUATIONS, 2001, 37 (04) :540-550
[4]   Critical exponents of Fujita type for certain evolution equations and systems with spatio-temporal fractional derivatives [J].
Kirane, M ;
Laskri, Y ;
Tatar, NE .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2005, 312 (02) :488-501
[5]   Non-existence of Global Solutions to a System of Fractional Diffusion Equations [J].
Kirane, M. ;
Ahmad, B. ;
Alsaedi, A. ;
Al-Yami, M. .
ACTA APPLICANDAE MATHEMATICAE, 2014, 133 (01) :235-248
[6]   Global nonexistence for the Cauchy problem of some nonlinear reaction-diffusion systems [J].
Kirane, M ;
Qafsaoui, M .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 268 (01) :217-243
[7]   Application of the Nonlinear Capacity Method to Differential Inequalities of Sobolev Type [J].
Korpusov, M. O. ;
Sveshnikov, A. G. .
DIFFERENTIAL EQUATIONS, 2009, 45 (07) :951-959
[8]  
Mitidieri E., 2001, T MAT I STEKLOVA, V234, P3
[9]  
Pokhozhaev SI, 1997, DOKL AKAD NAUK+, V357, P592