Cohen-Macaulayness and sequentially Cohen-Macaulayness of monomial ideals

被引:0
作者
Noormohammadi, Hassan [1 ]
Rahimi, Ahad [2 ]
机构
[1] Azarbaijan Shahid Madani Univ, Dept Math, Tabriz, Iran
[2] Razi Univ, Dept Math, Kermanshah, Iran
来源
RENDICONTI DEL SEMINARIO MATEMATICO DELLA UNIVERSITA DI PADOVA | 2018年 / 140卷
关键词
Monomial ideals; Cohen-Macaulay; sequentially Cohen-Macaulay; size of an ideal; BIGRADED MODULES; LOCAL COHOMOLOGY; PRIME IDEALS; DEPTH;
D O I
10.4171/RSMUP/9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we give a characterization for Cohen-Macaulay rings R/I where I subset of R = K[y(1 ),..., y(n) ] is a monomial ideal which satisfies bigsize I = size I. Next, we let S = K[x(1) ,..., x(m),y(1 ),..., y(n)] be a polynomial ring and I subset of S a monomial ideal. We study the sequentially Cohen-Macaulayness of S / I with respect to Q = (y(1 ),..., y(n)). Moreover, if I subset of R is a monomial ideal such that the associated prime ideals of I are in pairwise disjoint sets of variables, a classification of R/I to be sequentially Cohen-Macaulay is given. Finally, we compute grade(Q, M) where M is a sequentially Cohen-Macaulay S-module with respect to Q.
引用
收藏
页码:221 / 236
页数:16
相关论文
共 16 条
  • [1] Bruns Winfried, 1993, Cambridge Studies in Advanced Mathematics, V39
  • [2] THE EVENTUAL STABILITY OF DEPTH, ASSOCIATED PRIMES AND COHOMOLOGY OF A GRADED MODULE
    Chardin, Marc
    Jouanolou, Jean-Pierre
    Rahimi, Ahad
    [J]. JOURNAL OF COMMUTATIVE ALGEBRA, 2013, 5 (01) : 63 - 92
  • [3] CoCoA Team, CoCoA: A system for doing Computations in Commutative Algebra
  • [4] Faridi S., 2013, ARXIV13105598MATHAC
  • [5] Finite filtrations of modules and shellable multicomplexes
    Herzog, Juergen
    Popescu, Dorin
    [J]. MANUSCRIPTA MATHEMATICA, 2006, 121 (03) : 385 - 410
  • [6] STANLEY DEPTH AND SIZE OF A MONOMIAL IDEAL
    Herzog, Juergen
    Popescu, Dorin
    Vladoiu, Marius
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 140 (02) : 493 - 504
  • [7] Herzog J, 2011, GRAD TEXTS MATH, V260, P3, DOI 10.1007/978-0-85729-106-6
  • [8] RELATIVE COHEN-MACAULAYNESS AND RELATIVE UNMIXEDNESS OF BIGRADED MODULES
    Jahangiri, Maryam
    Rahimi, Ahad
    [J]. JOURNAL OF COMMUTATIVE ALGEBRA, 2012, 4 (04) : 551 - 575
  • [9] ON THE ARITHMETICAL RANK OF MONOMIAL IDEALS
    LYUBEZNIK, G
    [J]. JOURNAL OF ALGEBRA, 1988, 112 (01) : 86 - 89
  • [10] On the structure of sequentially Cohen-Macaulay bigraded modules
    Majd, Leila Parsaei
    Rahimi, Ahad
    [J]. CZECHOSLOVAK MATHEMATICAL JOURNAL, 2015, 65 (04) : 1011 - 1022