Cohen-Macaulayness and sequentially Cohen-Macaulayness of monomial ideals

被引:1
作者
Noormohammadi, Hassan [1 ]
Rahimi, Ahad [2 ]
机构
[1] Azarbaijan Shahid Madani Univ, Dept Math, Tabriz, Iran
[2] Razi Univ, Dept Math, Kermanshah, Iran
来源
RENDICONTI DEL SEMINARIO MATEMATICO DELLA UNIVERSITA DI PADOVA | 2018年 / 140卷
关键词
Monomial ideals; Cohen-Macaulay; sequentially Cohen-Macaulay; size of an ideal; BIGRADED MODULES; LOCAL COHOMOLOGY; PRIME IDEALS; DEPTH;
D O I
10.4171/RSMUP/9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we give a characterization for Cohen-Macaulay rings R/I where I subset of R = K[y(1 ),..., y(n) ] is a monomial ideal which satisfies bigsize I = size I. Next, we let S = K[x(1) ,..., x(m),y(1 ),..., y(n)] be a polynomial ring and I subset of S a monomial ideal. We study the sequentially Cohen-Macaulayness of S / I with respect to Q = (y(1 ),..., y(n)). Moreover, if I subset of R is a monomial ideal such that the associated prime ideals of I are in pairwise disjoint sets of variables, a classification of R/I to be sequentially Cohen-Macaulay is given. Finally, we compute grade(Q, M) where M is a sequentially Cohen-Macaulay S-module with respect to Q.
引用
收藏
页码:221 / 236
页数:16
相关论文
共 16 条
[1]  
Bruns Winfried, 1993, Cambridge Studies in Advanced Mathematics, V39
[2]   THE EVENTUAL STABILITY OF DEPTH, ASSOCIATED PRIMES AND COHOMOLOGY OF A GRADED MODULE [J].
Chardin, Marc ;
Jouanolou, Jean-Pierre ;
Rahimi, Ahad .
JOURNAL OF COMMUTATIVE ALGEBRA, 2013, 5 (01) :63-92
[3]  
CoCoA Team, CoCoA: A system for doing Computations in Commutative Algebra
[4]  
Faridi S., 2013, ARXIV13105598MATHAC
[5]   Finite filtrations of modules and shellable multicomplexes [J].
Herzog, Juergen ;
Popescu, Dorin .
MANUSCRIPTA MATHEMATICA, 2006, 121 (03) :385-410
[6]   STANLEY DEPTH AND SIZE OF A MONOMIAL IDEAL [J].
Herzog, Juergen ;
Popescu, Dorin ;
Vladoiu, Marius .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 140 (02) :493-504
[7]  
Herzog J, 2011, GRAD TEXTS MATH, V260, P3, DOI 10.1007/978-0-85729-106-6
[8]   RELATIVE COHEN-MACAULAYNESS AND RELATIVE UNMIXEDNESS OF BIGRADED MODULES [J].
Jahangiri, Maryam ;
Rahimi, Ahad .
JOURNAL OF COMMUTATIVE ALGEBRA, 2012, 4 (04) :551-575
[9]   ON THE ARITHMETICAL RANK OF MONOMIAL IDEALS [J].
LYUBEZNIK, G .
JOURNAL OF ALGEBRA, 1988, 112 (01) :86-89
[10]   On the structure of sequentially Cohen-Macaulay bigraded modules [J].
Majd, Leila Parsaei ;
Rahimi, Ahad .
CZECHOSLOVAK MATHEMATICAL JOURNAL, 2015, 65 (04) :1011-1022