Tuning rules for optimal PID and fractional-order PID controllers

被引:328
|
作者
Padula, Fabrizio [1 ]
Visioli, Antonio [1 ]
机构
[1] Univ Brescia, Dipartimento Ingn Informaz, I-25123 Brescia, Italy
关键词
Fractional-order controllers; PID control; Tuning; Optimisation; Performance assessment; DESIGN;
D O I
10.1016/j.jprocont.2010.10.006
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper we present a set of tuning rules for standard (integer-order) PID and fractional-order PID controllers. Based on a first-order-plus-dead-time model of the process, the tuning rules have been devised in order to minimise the integrated absolute error with a constraint on the maximum sensitivity. The achieved performance indexes can also be used for the assessment of the controller performance. Both set-point following and load disturbance rejection tasks are considered. By comparing the results obtained for the two kinds of controllers, it is shown that the use of fractional-order integral action is not advantageous, while the use of a fractional-order derivative action provides a performance improvement. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:69 / 81
页数:13
相关论文
共 50 条
  • [41] Tuning of fractional PID controllers with Ziegler-Nichols-type rules
    Valerio, Duarte
    Sa da Costa, Jose
    SIGNAL PROCESSING, 2006, 86 (10) : 2771 - 2784
  • [42] Tuning of optimal fractional-order PID controller using an artificial bee colony algorithm
    Kesarkar, Ameya Anil
    Selvaganesan, N.
    SYSTEMS SCIENCE & CONTROL ENGINEERING, 2015, 3 (01): : 99 - 105
  • [43] Optimal tuning rules for PI/PID controllers for inverse response processes
    Irshad, Mohammad
    Ali, Ahmad
    IFAC PAPERSONLINE, 2018, 51 (01): : 413 - 418
  • [44] Comments on "An Algorithm for Stabilization of Fractional-Order Time Delay Systems Using Fractional-Order PID Controllers"
    Hohenbichler, Norbert
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2008, 53 (11) : 2712 - 2712
  • [45] Tuning Method for Parameters in Fractional-Order PID Controllers Based on Neural Networks with Improved Borges Derivative
    Li, Mingdi
    Gao, Zhe
    Jia, Kai
    Xiao, Shasha
    2023 IEEE 12TH DATA DRIVEN CONTROL AND LEARNING SYSTEMS CONFERENCE, DDCLS, 2023, : 16 - 21
  • [46] DC Motor Speed Control via Fractional-Order PID Controllers
    Batiha, Iqbal M.
    Momani, Shaher
    Batyha, Radwan M.
    Jebril, Iqbal H.
    Abu Judeh, Duha
    Oudetallah, Jamal
    INTERNATIONAL JOURNAL OF FUZZY LOGIC AND INTELLIGENT SYSTEMS, 2024, 24 (01) : 74 - 82
  • [47] Design and Implementation of Fractional-order PID Controllers for a Fluid Tank System
    Tepljakov, Aleksei
    Petlenkov, Eduard
    Belikov, Juri
    Halas, Miroslav
    2013 AMERICAN CONTROL CONFERENCE (ACC), 2013, : 1777 - 1782
  • [48] H∞ optimization-based fractional-order PID controllers design
    Padula, F.
    Vilanova, R.
    Visioli, A.
    INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2014, 24 (17) : 3009 - 3026
  • [49] Application of Fractional-order PID controllers in a Greenhouse Climate Control System
    Edet, Emmanuel B.
    Chacon-Vasquez, Mercedes
    Onyeocha, Emmanuel C.
    IFAC PAPERSONLINE, 2024, 58 (12): : 179 - 184
  • [50] Tuning of fractional PID controllers by using QFT
    Cervera, Joaquin
    Banos, Alfonso
    Monje, Concha A.
    Vinagre, Blas M.
    IECON 2006 - 32ND ANNUAL CONFERENCE ON IEEE INDUSTRIAL ELECTRONICS, VOLS 1-11, 2006, : 3286 - +