Tuning rules for optimal PID and fractional-order PID controllers

被引:328
|
作者
Padula, Fabrizio [1 ]
Visioli, Antonio [1 ]
机构
[1] Univ Brescia, Dipartimento Ingn Informaz, I-25123 Brescia, Italy
关键词
Fractional-order controllers; PID control; Tuning; Optimisation; Performance assessment; DESIGN;
D O I
10.1016/j.jprocont.2010.10.006
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper we present a set of tuning rules for standard (integer-order) PID and fractional-order PID controllers. Based on a first-order-plus-dead-time model of the process, the tuning rules have been devised in order to minimise the integrated absolute error with a constraint on the maximum sensitivity. The achieved performance indexes can also be used for the assessment of the controller performance. Both set-point following and load disturbance rejection tasks are considered. By comparing the results obtained for the two kinds of controllers, it is shown that the use of fractional-order integral action is not advantageous, while the use of a fractional-order derivative action provides a performance improvement. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:69 / 81
页数:13
相关论文
共 50 条
  • [31] Implementation of Fractional Fuzzy PID Controllers for Control of Fractional-Order systems
    Varshney, Pragya
    Gupta, Sujit Kumar
    2014 INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTING, COMMUNICATIONS AND INFORMATICS (ICACCI), 2014, : 1322 - 1328
  • [32] Optimal fractional-order PID control of chaos in the fractional-order BUCK converter
    Zhu, Darui
    Liu, Ling
    Liu, Chongxin
    PROCEEDINGS OF THE 2014 9TH IEEE CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS (ICIEA), 2014, : 787 - 791
  • [33] Pareto optimal robust design of fractional-order PID controllers for systems with probabilistic uncertainties
    Hajiloo, A.
    Nariman-zadeh, N.
    Moeini, Ali
    MECHATRONICS, 2012, 22 (06) : 788 - 801
  • [34] Servo/Regulation Intermediate Tuning for Fractional Order PID Controllers
    Arrieta, O.
    Urvina, L.
    Visioli, A.
    Vilanova, R.
    Padula, F.
    2015 IEEE CONFERENCE ON CONTROL AND APPLICATIONS (CCA 2015), 2015, : 1242 - 1247
  • [35] On the Anti-windup Schemes for Fractional-order PID Controllers
    Padula, Fabrizio
    Visioli, Antonio
    Pagnoni, Manuel
    2012 IEEE 17TH CONFERENCE ON EMERGING TECHNOLOGIES & FACTORY AUTOMATION (ETFA), 2012,
  • [36] A review on FPGA implementation of fractional-order systems and PID controllers
    Ali, Aijaz
    Bingi, Kishore
    Ibrahim, Rosdiazli
    Devan, P. Arun Mozhi
    Devika, K. B.
    AEU-INTERNATIONAL JOURNAL OF ELECTRONICS AND COMMUNICATIONS, 2024, 177
  • [37] A Numerical Implementation of Fractional-Order PID Controllers for Autonomous Vehicles
    Batiha, Iqbal M.
    Ababneh, Osama Y.
    Al-Nana, Abeer A.
    Alshanti, Waseem G.
    Alshorm, Shameseddin
    Momani, Shaher
    AXIOMS, 2023, 12 (03)
  • [38] DETERMINATION OF ALL ROBUSTLY STABILIZING FRACTIONAL-ORDER PID CONTROLLERS
    Lee, Yung K.
    Watkins, John M.
    PROCEEDINGS OF THE ASME 5TH ANNUAL DYNAMIC SYSTEMS AND CONTROL DIVISION CONFERENCE AND JSME 11TH MOTION AND VIBRATION CONFERENCE, DSCC 2012, VOL 1, 2013, : 433 - +
  • [39] An algorithm for stabilization of fractional-order time delay systems using fractional-order PID controllers
    Hamamci, Serdar Ethem
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2007, 52 (10) : 1964 - 1969
  • [40] Ziegler-Nichols type tuning rules for fractional PID controllers
    Valerio, Duarte
    da Costa, Jose Sa
    PROCEEDINGS OF THE ASME INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, VOL 6, PTS A-C, 2005, : 1431 - 1440