Tuning rules for optimal PID and fractional-order PID controllers

被引:328
|
作者
Padula, Fabrizio [1 ]
Visioli, Antonio [1 ]
机构
[1] Univ Brescia, Dipartimento Ingn Informaz, I-25123 Brescia, Italy
关键词
Fractional-order controllers; PID control; Tuning; Optimisation; Performance assessment; DESIGN;
D O I
10.1016/j.jprocont.2010.10.006
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper we present a set of tuning rules for standard (integer-order) PID and fractional-order PID controllers. Based on a first-order-plus-dead-time model of the process, the tuning rules have been devised in order to minimise the integrated absolute error with a constraint on the maximum sensitivity. The achieved performance indexes can also be used for the assessment of the controller performance. Both set-point following and load disturbance rejection tasks are considered. By comparing the results obtained for the two kinds of controllers, it is shown that the use of fractional-order integral action is not advantageous, while the use of a fractional-order derivative action provides a performance improvement. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:69 / 81
页数:13
相关论文
共 50 条
  • [1] Design of optimal fractional-order PID controllers
    Leu, JF
    Tsay, SY
    Hwang, C
    JOURNAL OF THE CHINESE INSTITUTE OF CHEMICAL ENGINEERS, 2002, 33 (02): : 193 - 202
  • [2] Set-point weight tuning rules for fractional-order PID controllers
    Padula, Fabrizio
    Visioli, Antonio
    ASIAN JOURNAL OF CONTROL, 2013, 15 (03) : 678 - 690
  • [3] Optimal Tuning of Fractional-Order PID Controller
    Arun, M. K.
    Biju, U.
    Rajagopal, Neeraj Nair
    Bagyaveereswaran, V.
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON SOFT COMPUTING SYSTEMS, ICSCS 2015, VOL 1, 2016, 397 : 401 - 408
  • [4] On Fractional-order PID Controllers
    Edet, Emmanuel
    Katebi, Reza
    IFAC PAPERSONLINE, 2018, 51 (04): : 739 - 744
  • [5] Tuning guidelines for fractional order PID controllers: Rules of thumb
    Dastjerdi, Ali Ahmadi
    Saikumar, Niranjan
    HosseinNia, S. Hassan
    MECHATRONICS, 2018, 56 : 26 - 36
  • [6] Optimal approximation of analog PID controllers of complex fractional-order
    Mahata, Shibendu
    Herencsar, Norbert
    Maione, Guido
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2023, 26 (04) : 1566 - 1593
  • [7] Optimal approximation of analog PID controllers of complex fractional-order
    Shibendu Mahata
    Norbert Herencsar
    Guido Maione
    Fractional Calculus and Applied Analysis, 2023, 26 : 1566 - 1593
  • [8] Tuning and Application of Fractional Order PID Controllers
    Yan, Zhe
    Li, Kai
    Song, Changqi
    He, Jing
    Li, Yingyan
    PROCEEDINGS OF 2013 2ND INTERNATIONAL CONFERENCE ON MEASUREMENT, INFORMATION AND CONTROL (ICMIC 2013), VOLS 1 & 2, 2013, : 955 - 958
  • [9] H∞-design of fractional-order PID controllers
    Svaricek, Ferdinand
    Lachhab, Nabil
    AT-AUTOMATISIERUNGSTECHNIK, 2016, 64 (06) : 407 - 417
  • [10] PARETO OPTIMAL ROBUST DESIGN OF FUZZY FRACTIONAL-ORDER PID CONTROLLERS
    Nariman-zadeh, Nader
    Hajiloo, Amir
    MEMS, NANO AND SMART SYSTEMS, PTS 1-6, 2012, 403-408 : 4735 - 4742