Cal-Net: Jointly Learning Classification and Calibration On Imbalanced Binary Classification Tasks

被引:4
作者
Datta, Arghya [1 ]
Flynn, Noah R. [2 ]
Swamidass, S. Joshua [2 ]
机构
[1] Washington Univ, Dept Comp Sci & Engn, St Louis, MO 63110 USA
[2] Washington Univ, Dept Pathol & Immunol, St Louis, MO 63110 USA
来源
2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN) | 2021年
基金
美国国家卫生研究院;
关键词
D O I
10.1109/IJCNN52387.2021.9534411
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Datasets in critical domains are often class imbalanced, with a minority class far rarer than the majority class, and classification models face challenges to produce calibrated predictions on these datasets. A common approach to address this issue is to train classification models in the first step and subsequently use post-processing parametric or non-parametric calibration techniques to re-scale the model's outputs in the second step without tuning any underlying parameters in the model to improve calibration. In this study, we have shown that these common approaches are vulnerable to class imbalanced data, often producing unstable results that do not jointly optimize classification or calibration performance. We have introduced Cal-Net, a "self-calibrating" neural network architecture that simultaneously optimizes classification and calibration performances for class imbalanced datasets in a single training phase, thereby eliminating the need for any post-processing procedure for confidence calibration. Empirical results have shown that Cal-Net outperforms far more complex neural networks and post-processing calibration techniques in both classification and calibration performances on four synthetic and four benchmark class imbalanced binary classification datasets. Furthermore, Cal-Net can readily be extended to more complicated learning tasks, online learning and can be incorporated in more complex architectures as the final state.
引用
收藏
页数:8
相关论文
共 35 条
[1]  
Anand Avati Kenneth ., 2017, ABS171106402 CORR
[2]   SMOTE: Synthetic minority over-sampling technique [J].
Chawla, Nitesh V. ;
Bowyer, Kevin W. ;
Hall, Lawrence O. ;
Kegelmeyer, W. Philip .
2002, American Association for Artificial Intelligence (16)
[3]   Opportunities and obstacles for deep learning in biology and medicine [J].
Ching, Travers ;
Himmelstein, Daniel S. ;
Beaulieu-Jones, Brett K. ;
Kalinin, Alexandr A. ;
Do, Brian T. ;
Way, Gregory P. ;
Ferrero, Enrico ;
Agapow, Paul-Michael ;
Zietz, Michael ;
Hoffman, Michael M. ;
Xie, Wei ;
Rosen, Gail L. ;
Lengerich, Benjamin J. ;
Israeli, Johnny ;
Lanchantin, Jack ;
Woloszynek, Stephen ;
Carpenter, Anne E. ;
Shrikumar, Avanti ;
Xu, Jinbo ;
Cofer, Evan M. ;
Lavender, Christopher A. ;
Turaga, Srinivas C. ;
Alexandari, Amr M. ;
Lu, Zhiyong ;
Harris, David J. ;
DeCaprio, Dave ;
Qi, Yanjun ;
Kundaje, Anshul ;
Peng, Yifan ;
Wiley, Laura K. ;
Segler, Marwin H. S. ;
Boca, Simina M. ;
Swamidass, S. Joshua ;
Huang, Austin ;
Gitter, Anthony ;
Greene, Casey S. .
JOURNAL OF THE ROYAL SOCIETY INTERFACE, 2018, 15 (141)
[4]   Data Augmentation for Deep Neural Network Acoustic Modeling [J].
Cui, Xiaodong ;
Goel, Vaibhava ;
Kingsbury, Brian .
IEEE-ACM TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING, 2015, 23 (09) :1469-1477
[5]   When is Undersampling Effective in Unbalanced Classification Tasks? [J].
Dal Pozzolo, Andrea ;
Caelen, Olivier ;
Bontempi, Gianluca .
MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2015, PT I, 2015, 9284 :200-215
[6]  
Davis J., 2006, P 23 INT C MACH LEAR, P233, DOI [10.1145/1143844.1143874, DOI 10.1145/1143844.1143874]
[7]  
DEGROOT MH, 1983, J ROY STAT SOC D-STA, V32, P12
[8]  
Domingos P., 1999, P ACM SIGKDD INT C K, P155, DOI [DOI 10.1145/312129.312220, 10.1145/312129.312220]
[9]  
Elkan C, 2001, INT JOINT C ART INT, V17, P973
[10]  
García V, 2007, LECT NOTES COMPUT SC, V4756, P397