Continuous-time random walk theory of superslow diffusion

被引:36
作者
Denisov, S. I. [1 ,2 ]
Kantz, H. [1 ]
机构
[1] Max Planck Inst Phys Komplexer Syst, D-01187 Dresden, Germany
[2] Sumy State Univ, UA-40007 Sumy, Ukraine
关键词
ANOMALOUS DIFFUSION; DYNAMICS; LEVY;
D O I
10.1209/0295-5075/92/30001
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Superslow diffusion, i.e., the long-time diffusion of particles whose mean-square displacement (variance) grows slower than any power of time, is studied in the framework of the decoupled continuous-time random walk model. We show that this behavior of the variance occurs when the complementary cumulative distribution function of waiting times is asymptotically described by a slowly varying function. In this case, we derive a general representation of the laws of superslow diffusion for both biased and unbiased versions of the model and, to illustrate the obtained results, consider two particular classes of waiting-time distributions. Copyright (C) EPLA, 2010
引用
收藏
页数:4
相关论文
共 27 条
[1]  
Bingham N.H., 1989, REGULAR VARIATION
[2]   ANOMALOUS DIFFUSION IN DISORDERED MEDIA - STATISTICAL MECHANISMS, MODELS AND PHYSICAL APPLICATIONS [J].
BOUCHAUD, JP ;
GEORGES, A .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1990, 195 (4-5) :127-293
[3]   Fractional Fokker-Planck equation for ultraslow kinetics [J].
Chechkin, AV ;
Klafter, J ;
Sokolov, IM .
EUROPHYSICS LETTERS, 2003, 63 (03) :326-332
[4]   Biased diffusion in a piecewise linear random potential [J].
Denisov, S. I. ;
Denisova, E. S. ;
Kantz, H. .
EUROPEAN PHYSICAL JOURNAL B, 2010, 76 (01) :1-11
[5]   Langevin equation with super-heavy-tailed noise [J].
Denisov, S. I. ;
Kantz, H. ;
Haenggi, P. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2010, 43 (28)
[6]   Anomalous biased diffusion in a randomly layered medium [J].
Denisov, S. I. ;
Kantz, H. .
PHYSICAL REVIEW E, 2010, 81 (02)
[7]   Anomalous diffusion of particles driven by correlated noise [J].
Denisov, SI ;
Horsthemke, W .
PHYSICAL REVIEW E, 2000, 62 (06) :7729-7734
[8]   Strong anomaly in diffusion generated by iterated maps [J].
Dräger, J ;
Klafter, J .
PHYSICAL REVIEW LETTERS, 2000, 84 (26) :5998-6001
[9]  
Feller W., 1971, INTRO PROBABILITY TH
[10]   Physical nature of bacterial cytoplasm [J].
Golding, I ;
Cox, EC .
PHYSICAL REVIEW LETTERS, 2006, 96 (09)