Lizard: A Large-Scale Dataset for Colonic Nuclear Instance Segmentation and Classification

被引:76
作者
Graham, Simon [1 ]
Jahanifar, Mostafa [1 ]
Azam, Ayesha [2 ,3 ]
Nimir, Mohammed [2 ,3 ]
Tsang, Yee-Wah [2 ,3 ]
Dodd, Katherine [2 ,3 ]
Hero, Emily [2 ,3 ,4 ]
Sahota, Harvir [2 ,3 ]
Tank, Atisha [2 ,3 ]
Benes, Ksenija [5 ]
Wahab, Noorul [1 ]
Minhas, Fayyaz [1 ]
Raza, Shan E. Ahmed [1 ]
El Daly, Hesham [2 ,3 ]
Gopalakrishnan, Kishore [2 ,3 ]
Snead, David [2 ,3 ]
Rajpoot, Nasir [1 ]
机构
[1] Univ Warwick, Dept Comp Sci, Warwick, England
[2] Univ Hosp Coventry, Dept Pathol, Coventry, W Midlands, England
[3] Warwickshire NHS Trust, Warwick, England
[4] Univ Hosp Leicester NHS Trust, Dept Pathol, Leicester, Leics, England
[5] Royal Wolverhampton NHS Trust, Dept Pathol, Wolverhampton, England
来源
2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW 2021) | 2021年
关键词
NET;
D O I
10.1109/ICCVW54120.2021.00082
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The development of deep segmentation models for computational pathology (CPath) can help foster the investigation of interpretable morphological biomarkers. Yet, there is a major bottleneck in the success of such approaches because supervised deep learning models require an abundance of accurately labelled data. This issue is exacerbated in the field of CPath because the generation of detailed annotations usually demands the input of a pathologist to be able to distinguish between different tissue constructs and nuclei. Manually labelling nuclei may not be a feasible approach for collecting large-scale annotated datasets, especially when a single image region can contain thousands of different cells. However, solely relying on automatic generation of annotations will limit the accuracy and reliability of ground truth. Therefore, to help overcome the above challenges, we propose a multi-stage annotation pipeline to enable the collection of large-scale datasets for histology image analysis, with pathologist-in-the-loop refinement steps. Using this pipeline, we generate the largest known nuclear instance segmentation and classification dataset, containing nearly half a million labelled nuclei in H&E stained colon tissue. We have released the dataset and encourage the research community to utilise it to drive forward the development of downstream cell-based models in CPath.
引用
收藏
页码:684 / 693
页数:10
相关论文
共 40 条
  • [1] A Bottom-up Approach for Tumour Differentiation in Whole Slide Images of Lung Adenocarcinoma
    Alsubaie, Najah
    Sirinukunwattana, Korsuk
    Raza, Shan E. Ahmed
    Snead, David
    Rajpoot, Nasir
    [J]. MEDICAL IMAGING 2018: DIGITAL PATHOLOGY, 2018, 10581
  • [2] Amgad M., ARXIV PREPRINT ARXIV
  • [3] Diagnostic Assessment of Deep Learning Algorithms for Detection of Lymph Node Metastases in Women With Breast Cancer
    Bejnordi, Babak Ehteshami
    Veta, Mitko
    van Diest, Paul Johannes
    van Ginneken, Bram
    Karssemeijer, Nico
    Litjens, Geert
    van der Laak, Jeroen A. W. M.
    [J]. JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2017, 318 (22): : 2199 - 2210
  • [4] Automated deep-learning system for Gleason grading of prostate cancer using biopsies: a diagnostic study
    Bulten, Wouter
    Pinckaers, Hans
    van Boven, Hester
    Vink, Robert
    de Bel, Thomas
    van Ginneken, Bram
    van der Laak, Jeroen
    Hulsbergen-van de Kaa, Christina
    Litjens, Geert
    [J]. LANCET ONCOLOGY, 2020, 21 (02) : 233 - 241
  • [5] Clinical-grade computational pathology using weakly supervised deep learning on whole slide images
    Campanella, Gabriele
    Hanna, Matthew G.
    Geneslaw, Luke
    Miraflor, Allen
    Silva, Vitor Werneck Krauss
    Busam, Klaus J.
    Brogi, Edi
    Reuter, Victor E.
    Klimstra, David S.
    Fuchs, Thomas J.
    [J]. NATURE MEDICINE, 2019, 25 (08) : 1301 - +
  • [6] DCAN: Deep contour-aware networks for object instance segmentation from histology images
    Chen, Hao
    Qi, Xiaojuan
    Yu, Lequan
    Dou, Qi
    Qin, Jing
    Heng, Pheng-Ann
    [J]. MEDICAL IMAGE ANALYSIS, 2017, 36 : 135 - 146
  • [7] Chen T, 2020, PR MACH LEARN RES, V119
  • [8] A COEFFICIENT OF AGREEMENT FOR NOMINAL SCALES
    COHEN, J
    [J]. EDUCATIONAL AND PSYCHOLOGICAL MEASUREMENT, 1960, 20 (01) : 37 - 46
  • [9] Human-interpretable image features derived from densely mapped cancer pathology slides predict diverse molecular phenotypes
    Diao, James A.
    Wang, Jason K.
    Chui, Wan Fung
    Mountain, Victoria
    Gullapally, Sai Chowdary
    Srinivasan, Ramprakash
    Mitchell, Richard N.
    Glass, Benjamin
    Hoffman, Sara
    Rao, Sudha K.
    Maheshwari, Chirag
    Lahiri, Abhik
    Prakash, Aaditya
    McLoughlin, Ryan
    Kerner, Jennifer K.
    Resnick, Murray B.
    Montalto, Michael C.
    Khosla, Aditya
    Wapinski, Ilan N.
    Beck, Andrew H.
    Elliott, Hunter L.
    Taylor-Weiner, Amaro
    [J]. NATURE COMMUNICATIONS, 2021, 12 (01)
  • [10] Feng C., MED IMAGING DEEP LEA