Simulation of dynamically tunable and switchable electromagnetically induced transparency analogue based on metal-graphene hybrid metamaterial

被引:111
作者
Chen, Mingming [1 ,2 ]
Xiao, Zhongyin [1 ,2 ]
Lu, Xiaojie [1 ,2 ]
Lv, Fei [1 ,2 ]
Zhou, Yongjin [1 ,2 ]
机构
[1] Shanghai Univ, Sch Commun & Informat Engn, Key Lab Specialty Fiber Opt & Opt Access Networks, Shanghai, Peoples R China
[2] Shanghai Univ, Sch Commun & Informat Engn, Shanghai Inst Adv Commun & Data Sci, Shanghai, Peoples R China
基金
上海市自然科学基金; 中国国家自然科学基金;
关键词
NEGATIVE PERMITTIVITY; FANO RESONANCE; CLASSICAL ANALOG; MODULATION; NANOSTRUCTURES; METACOMPOSITES; PERFORMANCE; ABSORPTION; PLASMONICS; LIGHT;
D O I
10.1016/j.carbon.2019.12.050
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A planar terahertz electromagnetically induced transparency-like (EIT-like) metamaterial, comprising an outer circular ring resonator (CRS) made by graphene, an inner vertical two-gap circular split ring resonator (VSRR) and a smaller horizontal two-gap circular split ring resonator (HSRR), is proposed. A distinct transparency window can be observed in two perpendicular polarization directions, respectively. By tuning the Fermi energy, the maximum modulation depths in two perpendicular polarization directions respectively can reach up to 83.54% and 94.39%. Meanwhile, the EIT-like effect, amplitude of transparency window, group delay and delay bandwidth product (DBP) can be adjusted dynamically without shift of frequency. The surface currents and three-level Lambda-type system can explain the physical mechanism of EIT-like effect. The analytical results based on a two-particle model are in good agreement with the numerical results. Our work provides a new method for dynamically adjustable terahertz slow light devices, which makes the graphene more controllable in metal-graphene hybrid structure. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页码:273 / 282
页数:10
相关论文
共 87 条
[1]   Classical analog of electromagnetically induced transparency [J].
Alzar, CLG ;
Martinez, MAG ;
Nussenzveig, P .
AMERICAN JOURNAL OF PHYSICS, 2002, 70 (01) :37-41
[2]   OBSERVATION OF ELECTROMAGNETICALLY INDUCED TRANSPARENCY [J].
BOLLER, KJ ;
IMAMOGLU, A ;
HARRIS, SE .
PHYSICAL REVIEW LETTERS, 1991, 66 (20) :2593-2596
[3]  
Bonaccorso F, 2010, NAT PHOTONICS, V4, P611, DOI [10.1038/NPHOTON.2010.186, 10.1038/nphoton.2010.186]
[4]   Tunable negative permittivity and magnetic performance of yttrium iron garnet/polypyrrole metacomposites at the RF frequency [J].
Cheng, Chuanbing ;
Fan, Runhua ;
Fan, Guohua ;
Liu, Hu ;
Zhang, Jiaoxia ;
Shen, Jianxing ;
Ma, Qian ;
Wei, Renbo ;
Guo, Zhanhu .
JOURNAL OF MATERIALS CHEMISTRY C, 2019, 7 (11) :3160-3167
[5]   Ultrathin dual-mode filtering characteristics of terahertz metamaterials with electrically unconnected and connected U-shaped resonators array [J].
Cheng, Zhaoxiang ;
Chen, Lin ;
Zang, Xiaofei ;
Cai, Bin ;
Peng, Yan ;
Zhu, Yiming .
OPTICS COMMUNICATIONS, 2015, 342 :20-25
[6]   Analogue of electromagnetically induced transparency in a terahertz metamaterial [J].
Chiam, Sher-Yi ;
Singh, Ranjan ;
Rockstuhl, Carsten ;
Lederer, Falk ;
Zhang, Weili ;
Bettiol, Andrew A. .
PHYSICAL REVIEW B, 2009, 80 (15)
[7]   Printable ion-gel gate dielectrics for low-voltage polymer thin-film transistors on plastic [J].
Cho, Jeong Ho ;
Lee, Jiyoul ;
Xia, Yu ;
Kim, Bongsoo ;
He, Yiyong ;
Renn, Michael J. ;
Lodge, Timothy P. ;
Frisbie, C. Daniel .
NATURE MATERIALS, 2008, 7 (11) :900-906
[8]   Symmetry-Protected Dual Bound States in the Continuum in Metamaterials [J].
Cong, Longqing ;
Singh, Ranjan .
ADVANCED OPTICAL MATERIALS, 2019, 7 (13)
[9]   Fano Resonances in Terahertz Metasurfaces: A Figure of Merit Optimization [J].
Cong, Longqing ;
Manjappa, Manukumara ;
Xu, Ningning ;
Al-Naib, Ibraheem ;
Zhang, Weili ;
Singh, Ranjan .
ADVANCED OPTICAL MATERIALS, 2015, 3 (11) :1537-1543
[10]   Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor [J].
Das, A. ;
Pisana, S. ;
Chakraborty, B. ;
Piscanec, S. ;
Saha, S. K. ;
Waghmare, U. V. ;
Novoselov, K. S. ;
Krishnamurthy, H. R. ;
Geim, A. K. ;
Ferrari, A. C. ;
Sood, A. K. .
NATURE NANOTECHNOLOGY, 2008, 3 (04) :210-215