Neurological Prognostication Using Raw EEG Patterns and Spectrograms of Frontal EEG in Cardiac Arrest Patients

被引:6
作者
Choi, Wook Jin [1 ]
Lee, Jae Hoon [2 ]
Kim, Sang Ho [3 ]
机构
[1] Ulsan Univ, Dept Emergency Med, Coll Med, Ulsan, South Korea
[2] Dong A Univ, Coll Med, Dept Emergency Med, 26 Daesin Gonwon Ro, Busan 49201, South Korea
[3] Dong A Univ, Coll Med, Dept Neurol, Busan, South Korea
基金
新加坡国家研究基金会;
关键词
Electroencephalography; Out-of-hospital cardiac arrest; Prognosis; Hypoxia-ischemia; Brain; DENSITY SPECTRAL ARRAY; EPILEPTIFORM DISCHARGES; COMATOSE PATIENTS; CARE; ELECTROENCEPHALOGRAPHY; PREDICTION; SURVIVORS;
D O I
10.1097/WNP.0000000000000787
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Purpose: We investigated which raw EEG and spectrogram patterns in frontal EEG predict poor neurological outcomes in patients with hypoxic ischemic encephalopathy after cardiac arrest. Methods: This multicenter, prospective, observational study included 52 patients with anoxic brain injury after cardiac arrest. Raw EEGs and spectrograms (color density spectral arrays) measured with hardwired frontal EEG monitoring were used to predict poor prognosis. Neurological variables upon admission, raw EEG patterns, including highly malignant and malignant EEG patterns, and changes in frequency and amplitude from color density spectral arrays were investigated. Results: All patients exhibiting highly malignant EEG patterns died, and malignant EEG patterns were significant predictors of poor prognosis as the area under the receiver operating characteristic curve was 0.83 to 0.86. Irregular high-voltage waves in the high-frequency beta band in continuous background EEGs were associated with poor prognosis (P = 0.022). Malignant EEG patterns including high-voltage and high-frequency beta waves were significantly stronger predictors of poor prognosis than the absence of ventricular fibrillation and pupil reflex, delayed length of anoxic time, and lower Glasgow coma scale score (odds ratio, 9; P = 0.035). Compared with prognostication using malignant EEG patterns alone, the area under the receiver operating characteristic curve of results incorporating high-voltage and high-frequency beta waves was 0.84 (vs. 0.83) at day 1, 0.88 (vs. 0.85) at day 2, 0.92 (vs. 0.86) at day 3, and 0.99 (vs. 0.86) at day 4. Conclusions: Frontal EEG monitoring is useful for predicting poor neurological outcomes. Brain function monitoring using both raw EEG patterns and color density spectral arrays is more helpful for predicting poor prognosis than raw EEG alone.
引用
收藏
页码:427 / 433
页数:7
相关论文
共 31 条
[1]   Highly malignant routine EEG predicts poor prognosis after cardiac arrest in the Target Temperature Management trial [J].
Backman, S. ;
Cronberg, T. ;
Friberg, H. ;
Ullen, S. ;
Horn, J. ;
Kjaergaard, J. ;
Hassager, C. ;
Wanscher, M. ;
Nielsen, N. ;
Westhall, E. .
RESUSCITATION, 2018, 131 :24-28
[2]   Contemporary Approach to Neurologic Prognostication of Coma Aft er Cardiac Arrest [J].
Ben-Hamouda, Nawfel ;
Taccone, Fabio S. ;
Rossetti, Andrea O. ;
Oddo, Mauro .
CHEST, 2014, 146 (05) :1375-1386
[3]   Neurologic outcome of postanoxic refractory status epilepticus after aggressive treatment [J].
Beretta, Simone ;
Coppo, Anna ;
Bianchi, Elisa ;
Zanchi, Clara ;
Carone, Davide ;
Stabile, Andrea ;
Padovano, Giada ;
Sulmina, Endrit ;
Grassi, Alice ;
Bogliun, Graziella ;
Foti, Giuseppe ;
Ferrarese, Carlo ;
Pesenti, Antonio ;
Beghi, Ettore ;
Avalli, Leonello .
NEUROLOGY, 2018, 91 (23) :E2153-E2162
[4]   Part 8: Post-Cardiac Arrest Care 2015 American Heart Association Guidelines Update for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care [J].
Callaway, Clifton W. ;
Donnino, Michael W. ;
Fink, Ericka L. ;
Geocadin, Romergryko G. ;
Golan, Eyal ;
Kern, Karl B. ;
Leary, Marion ;
Meurer, William J. ;
Peberdy, Mary Ann ;
Thompson, Trevonne M. ;
Zimmerman, Janice L. .
CIRCULATION, 2015, 132 (18) :S465-S482
[5]   Effect of sedation on quantitative electroencephalography after cardiac arrest [J].
Drohan, Callie M. ;
Cardi, Alessandra I. ;
Rittenberger, Jon C. ;
Popescu, Alexandra ;
Callaway, Clifton W. ;
Baldwin, Maria E. ;
Elmer, Jonathan .
RESUSCITATION, 2018, 124 :132-137
[6]   EMG contamination of EEG: spectral and topographical characteristics [J].
Goncharova, II ;
McFarland, DJ ;
Vaughan, TM ;
Wolpaw, JR .
CLINICAL NEUROPHYSIOLOGY, 2003, 114 (09) :1580-1593
[7]   Color density spectral array of bilateral bispectral index system: Electroencephalographic correlate in comatose patients with nonconvulsive status epilepticus [J].
Hernandez-Hernandez, Miguel A. ;
Fernandez-Torre, Jose L. .
SEIZURE-EUROPEAN JOURNAL OF EPILEPSY, 2016, 34 :18-25
[8]   American Clinical Neurophysiology Society's Standardized Critical Care EEG Terminology: 2012 version [J].
Hirsch, L. J. ;
LaRoche, S. M. ;
Gaspard, N. ;
Gerard, E. ;
Svoronos, A. ;
Herman, S. T. ;
Mani, R. ;
Arif, H. ;
Jette, N. ;
Minazad, Y. ;
Kerrigan, J. F. ;
Vespa, P. ;
Hantus, S. ;
Claassen, J. ;
Young, G. B. ;
So, E. ;
Kaplan, P. W. ;
Nuwer, M. R. ;
Fountain, N. B. ;
Drislane, F. W. .
JOURNAL OF CLINICAL NEUROPHYSIOLOGY, 2013, 30 (01) :1-27
[9]   Burst-suppression with identical bursts: A distinct EEG pattern with poor outcome in postanoxic coma [J].
Hofmeijer, Jeannette ;
Tjepkema-Cloostermans, Marleen C. ;
van Putten, Michel J. A. M. .
CLINICAL NEUROPHYSIOLOGY, 2014, 125 (05) :947-954
[10]   Forehead electrodes sufficiently detect propofol-induced slow waves for the assessment of brain function after cardiac arrest [J].
Kortelainen, Jukka ;
Vayrynen, Eero ;
Juuso, Ilkka ;
Laurila, Jouko ;
Koskenkari, Juha ;
Ala-Kokko, Tero .
JOURNAL OF CLINICAL MONITORING AND COMPUTING, 2020, 34 (01) :105-110