Estimating Structural Mean Models with Multiple Instrumental Variables Using the Generalised Method of Moments

被引:15
|
作者
Clarke, Paul S. [1 ]
Palmer, Tom M. [2 ]
Windmeijer, Frank [3 ,4 ]
机构
[1] Univ Essex, Inst Social & Econ Res, Colchester CO4 3SQ, Essex, England
[2] Univ Warwick, Warwick Med Sch, Div Hlth Sci, Coventry CV4 7AL, W Midlands, England
[3] Univ Bristol, Ctr Market & Publ Org, Bristol BS8 1TN, Avon, England
[4] Univ Bristol, Dept Econ, Bristol BS8 1TN, Avon, England
基金
英国医学研究理事会; 欧洲研究理事会;
关键词
Structural mean models; multiple instrumental variables; generalised method of moments; Mendelian randomisation; local average treatment effects; MENDELIAN RANDOMIZATION; CAUSAL INFERENCE; NONCOMPLIANCE; TRIALS; RISK; IDENTIFICATION; VARIANTS; MASS;
D O I
10.1214/14-STS503
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Instrumental variables analysis using genetic markers as instruments is now a widely used technique in epidemiology and biostatistics. As single markers tend to explain only a small proportion of phenotypic variation, there is increasing interest in using multiple genetic markers to obtain more precise estimates of causal parameters. Structural mean models (SMMs) are semiparametric models that use instrumental variables to identify causal parameters. Recently, interest has started to focus on using these models with multiple instruments, particularly for multiplicative and logistic SMMs. In this paper we show how additive, multiplicative and logistic SMMs with multiple orthogonal binary instrumental variables can be estimated efficiently in models with no further (continuous) covariates, using the generalised method of moments (GMM) estimator. We discuss how the Hansen J-test can be used to test for model misspecification, and how standard GMM software routines can be used to fit SMMs. We further show that multiplicative SMMs, like the additive SMM, identify a weighted average of local causal effects if selection is monotonic. We use these methods to reanalyse a study of the relationship between adiposity and hypertension using SMMs with two genetic markers as instruments for adiposity. We find strong effects of adiposity on hypertension.
引用
收藏
页码:96 / 117
页数:22
相关论文
共 50 条
  • [1] Marginal and Nested Structural Models Using Instrumental Variables
    Tan, Zhiqiang
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2010, 105 (489) : 157 - 169
  • [2] Estimating Peer Effects in Longitudinal Dyadic Data Using Instrumental Variables
    O'Malley, A. James
    Elwert, Felix
    Rosenquist, J. Niels
    Zaslavsky, Alan M.
    Christakis, Nicholas A.
    BIOMETRICS, 2014, 70 (03) : 506 - 515
  • [3] Using multiple genetic variants as instrumental variables for modifiable risk factors
    Palmer, Tom M.
    Lawlor, Debbie A.
    Harbord, Roger M.
    Sheehan, Nuala A.
    Tobias, Jon H.
    Timpson, Nicholas J.
    Smith, George Davey
    Sterne, Jonathan A. C.
    STATISTICAL METHODS IN MEDICAL RESEARCH, 2012, 21 (03) : 223 - 242
  • [4] Instrumental Variable Estimation of Marginal Structural Mean Models for Time-Varying Treatment
    Michael, Haben
    Cui, Yifan
    Lorch, Scott A.
    Tchetgen, Eric Tchetgen J.
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2024, 119 (546) : 1240 - 1251
  • [5] Estimating Endogenous Treatment Effects Using Latent Factor Models with and without Instrumental Variables
    Banerjee, Souvik
    Basu, Anirban
    ECONOMETRICS, 2021, 9 (01)
  • [6] Estimating causal effects with hidden confounding using instrumental variables and environments
    Long, James P.
    Zhu, Hongxu
    Do, Kim-Anh
    Ha, Min Jin
    ELECTRONIC JOURNAL OF STATISTICS, 2023, 17 (02): : 2849 - 2879
  • [7] Instrumental variable estimation of causal odds ratios using structural nested mean models
    Matsouaka, Roland A.
    Tchetgen, Eric J. Tchetgen
    BIOSTATISTICS, 2017, 18 (03) : 465 - 476
  • [8] Instrumental variables estimation of exposure effects on a time-to-event endpoint using structural cumulative survival models
    Martinussen, Torben
    Vansteelandt, Stijn
    Tchetgen, Eric J. Tchetgen
    Zucker, David M.
    BIOMETRICS, 2017, 73 (04) : 1140 - 1149
  • [9] Estimating Causal Effects in Linear Regression Models With Observational Data: The Instrumental Variables Regression Model
    Maydeu-Olivares, Alberto
    Shi, Dexin
    Fairchild, Amanda J.
    PSYCHOLOGICAL METHODS, 2020, 25 (02) : 243 - 258
  • [10] Using Instrumental Variables to Measure Causation over Time in Cross-Lagged Panel Models
    Singh, Madhurbain
    Verhulst, Brad
    Vinh, Philip
    Zhou, Yi
    Castro-de-Araujo, Luis F. S.
    Hottenga, Jouke-Jan
    Pool, Rene
    de Geus, Eco J. C.
    Vink, Jacqueline M.
    Boomsma, Dorret I.
    Maes, Hermine H. M.
    Dolan, Conor V.
    Neale, Michael C.
    MULTIVARIATE BEHAVIORAL RESEARCH, 2023, 59 (02) : 342 - 370