Optimal control of distributed actuator and sensor arrays
被引:3
作者:
Bamieh, B
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif Santa Barbara, Ctr Control Engn & Computat, Santa Barbara, CA 93106 USAUniv Calif Santa Barbara, Ctr Control Engn & Computat, Santa Barbara, CA 93106 USA
Bamieh, B
[1
]
Paganini, F
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif Santa Barbara, Ctr Control Engn & Computat, Santa Barbara, CA 93106 USAUniv Calif Santa Barbara, Ctr Control Engn & Computat, Santa Barbara, CA 93106 USA
Paganini, F
[1
]
Dahleh, M
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif Santa Barbara, Ctr Control Engn & Computat, Santa Barbara, CA 93106 USAUniv Calif Santa Barbara, Ctr Control Engn & Computat, Santa Barbara, CA 93106 USA
Dahleh, M
[1
]
机构:
[1] Univ Calif Santa Barbara, Ctr Control Engn & Computat, Santa Barbara, CA 93106 USA
来源:
SMART STRUCTURES AND MATERIALS 1998: MATHEMATICS AND CONTROL IN SMART STRUCTURES
|
1998年
/
3323卷
关键词:
distributed parameter systems;
optimal and robust control;
actuator and sensor arrays;
spatial invariance;
D O I:
10.1117/12.316326
中图分类号:
V [航空、航天];
学科分类号:
08 ;
0825 ;
摘要:
We consider optimal H-2 and H-infinity control design problems for distributed parameter systems with large arrays of sensors and actuators. We assume that the actuator and sensor array forms a regular lattice, and that the underlying dynamics have a property of spatial invariance with respect to shifts in the lattice. We show how Fourier transforms over the spatial domain reduces the optimization to a family of standard, finite-dimensional problems over spatial frequency. The solutions are then obtained by parameterized families of matrix algebraic Riccati equations. Such optimal controllers have a natural decentralized and separation structure which we analyze.