β-Cell pre-mir-21 induces dysfunction and loss of cellular identity by targeting transforming growth factor beta 2 (Tgfb2) and Smad family member 2 (Smad2) mRNAs

被引:14
作者
Ibrahim, Sara [1 ,2 ]
Johnson, Macey [2 ]
Stephens, Clarissa Hernandez [2 ,3 ]
Xu, Jerry [2 ,3 ,6 ]
Moore, Rachel [2 ,3 ]
Mariani, Andrea [2 ,3 ]
Contreras, Christopher [2 ,3 ]
Syed, Farooq [2 ,6 ]
Mirmira, Raghavendra G. [4 ,5 ]
Anderson, Ryan M. [4 ,5 ]
Sims, Emily K. [2 ,3 ,6 ]
机构
[1] Dept Biochem & Mol Biol, Chicago, IL USA
[2] Ctr Diabet & Metab Dis, Chicago, IL USA
[3] Dept Pediat, Chicago, IL USA
[4] Univ Chicago, Kovler Diabet Ctr, Chicago, IL 60637 USA
[5] Univ Chicago, Dept Med, Chicago, IL 60637 USA
[6] Wells Ctr Pediat Res, Indianapolis, IN USA
来源
MOLECULAR METABOLISM | 2021年 / 53卷
基金
美国国家卫生研究院;
关键词
beta-cell; Islet; microRNA; 21; Dedifferentiation; Identity; beta-cell dysfunction; DEDIFFERENTIATION; MICRORNAS; TYPE-1; GENE; INFLAMMATION; EXPRESSION; STRESS;
D O I
10.1016/j.molmet.2021.101289
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Objective: beta-cell microRNA-21 (miR-21) is increased by islet inflammatory stress but it decreases glucose-stimulated insulin secretion (GSIS). Thus, we sought to define the effects of miR-21 on beta-cell function using in vitro and in vivo systems. Methods: We developed a tetracycline-on system of pre-miR-21 induction in clonal beta-cells and human islets, along with transgenic zebrafish and mouse models of beta-cell-specific pre-miR-21 overexpression. Results: beta-cell miR-21 induction markedly reduced GSIS and led to reductions in transcription factors associated with beta-cell identity and increased markers of dedifferentiation, which led us to hypothesize that miR-21 induces beta-cell dysfunction by loss of cell identity. In silico analysis identified transforming growth factor-beta 2 (Tgfb2) and Smad family member 2 (Smad2) mRNAs as predicted miR-21 targets associated with the maintenance of beta-cell identity. Tgfb2 and Smad2 were confirmed as direct miR-21 targets through RT-PCR, immunoblot, pulldown, and luciferase assays. In vivo zebrafish and mouse models exhibited glucose intolerance, decreased peak GSIS, decreased expression of beta-cell identity markers, increased insulin and glucagon co-staining cells, and reduced Tgfb2 and Smad2 expression. Conclusions: These findings implicate miR-21-mediated reduction of mRNAs specifying beta-cell identity as a contributor to beta-cell dysfunction by the loss of cellular differentiation. (C) 2021 The Authors. Published by Elsevier GmbH.
引用
收藏
页数:13
相关论文
共 47 条
[1]   Predicting effective microRNA target sites in mammalian mRNAs [J].
Agarwal, Vikram ;
Bell, George W. ;
Nam, Jin-Wu ;
Bartel, David P. .
ELIFE, 2015, 4
[2]   Altering β-cell number through stable alteration of miR-21 and miR-34a expression [J].
Backe, Marie Balslev ;
Novotny, Guy Wayne ;
Christensen, Dan Ploug ;
Grunnet, Lars Groth ;
Mandrup-Poulsen, Thomas .
ISLETS, 2014, 6 (01)
[3]   Detailed protocol for evaluation of dynamic perifusion of human islets to assess β-cell function [J].
Bentsi-Barnes, Kwamina ;
Doyle, Maire E. ;
Abad, Danny ;
Kandeel, Fouad ;
Al-Abdullah, Ismail H. .
ISLETS, 2011, 3 (05) :284-290
[4]   Inflammation-Mediated Regulation of MicroRNA Expression in Transplanted Pancreatic Islets [J].
Bravo-Egana, Valia ;
Rosero, Samuel ;
Klein, Dagmar ;
Jiang, Zhijie ;
Vargas, Nancy ;
Tsinoremas, Nicholas ;
Doni, Marco ;
Podetta, Michele ;
Ricordi, Camillo ;
Molano, R. Damaris ;
Pileggi, Antonello ;
Pastori, Ricardo L. .
JOURNAL OF TRANSPLANTATION, 2012, 2012
[5]   Reversible changes in pancreatic islet structure and function produced by elevated blood glucose [J].
Brereton, Melissa F. ;
Iberl, Michaela ;
Shimomura, Kenju ;
Zhang, Quan ;
Adriaenssens, Alice E. ;
Proks, Peter ;
Spiliotis, Ioannis I. ;
Dace, William ;
Mattis, Katia K. ;
Ramracheya, Reshma ;
Gribble, Fiona M. ;
Reimann, Frank ;
Clark, Anne ;
Rorsman, Patrik ;
Ashcroft, Frances M. .
NATURE COMMUNICATIONS, 2014, 5
[6]   Emerging roles for the TGFβ family in pancreatic β-cell homeostasis [J].
Brown, Melissa L. ;
Schneyer, Alan L. .
TRENDS IN ENDOCRINOLOGY AND METABOLISM, 2010, 21 (07) :441-448
[7]   Expansion of the Gene Ontology knowledgebase and resources [J].
Carbon, S. ;
Dietze, H. ;
Lewis, S. E. ;
Mungall, C. J. ;
Munoz-Torres, M. C. ;
Basu, S. ;
Chisholm, R. L. ;
Dodson, R. J. ;
Fey, P. ;
Thomas, P. D. ;
Mi, H. ;
Muruganujan, A. ;
Huang, X. ;
Poudel, S. ;
Hu, J. C. ;
Aleksander, S. A. ;
McIntosh, B. K. ;
Renfro, D. P. ;
Siegele, D. A. ;
Antonazzo, G. ;
Attrill, H. ;
Brown, N. H. ;
Marygold, S. J. ;
McQuilton, P. ;
Ponting, L. ;
Millburn, G. H. ;
Rey, A. J. ;
Stefancsik, R. ;
Tweedie, S. ;
Falls, K. ;
Schroeder, A. J. ;
Courtot, M. ;
Osumi-Sutherland, D. ;
Parkinson, H. ;
Roncaglia, P. ;
Lovering, R. C. ;
Foulger, R. E. ;
Huntley, R. P. ;
Denny, P. ;
Campbell, N. H. ;
Kramarz, B. ;
Patel, S. ;
Buxton, J. L. ;
Umrao, Z. ;
Deng, A. T. ;
Alrohaif, H. ;
Mitchell, K. ;
Ratnaraj, F. ;
Omer, W. ;
Rodriguez-Lopez, M. .
NUCLEIC ACIDS RESEARCH, 2017, 45 (D1) :D331-D338
[8]  
Cernea S, 2013, BIOCHEM MEDICA, V23, P266
[9]   miRTarBase update 2018: a resource for experimentally validated microRNA-target interactions [J].
Chou, Chih-Hung ;
Shrestha, Sirjana ;
Yang, Chi-Dung ;
Chang, Nai-Wen ;
Lin, Yu-Ling ;
Liao, Kuang-Wen ;
Huang, Wei-Chi ;
Sun, Ting-Hsuan ;
Tu, Siang-Jyun ;
Lee, Wei-Hsiang ;
Chiew, Men-Yee ;
Tai, Chun-San ;
Wei, Ting-Yen ;
Tsai, Tzi-Ren ;
Huang, Hsin-Tzu ;
Wang, Chung-Yu ;
Wu, Hsin-Yi ;
Ho, Shu-Yi ;
Chen, Pin-Rong ;
Chuang, Cheng-Hsun ;
Hsieh, Pei-Jung ;
Wu, Yi-Shin ;
Chen, Wen-Liang ;
Li, Meng-Ju ;
Wu, Yu-Chun ;
Huang, Xin-Yi ;
Ng, Fung Ling ;
Buddhakosai, Waradee ;
Huang, Pei-Chun ;
Lan, Kuan-Chun ;
Huang, Chia-Yen ;
Weng, Shun-Long ;
Cheng, Yeong-Nan ;
Liang, Chao ;
Hsu, Wen-Lian ;
Huang, Hsien-Da .
NUCLEIC ACIDS RESEARCH, 2018, 46 (D1) :D296-D302
[10]   Simplified production and concentration of lentiviral vectors to achieve high transduction in primary human T cells [J].
Cribbs, Adam P. ;
Kennedy, Alan ;
Gregory, Bernard ;
Brennan, Fionula M. .
BMC BIOTECHNOLOGY, 2013, 13