SOLVABILITY OF THE FREE BOUNDARY VALUE PROBLEM OF THE NAVIER-STOKES EQUATIONS

被引:29
作者
Bae, Hantaek [1 ]
机构
[1] Univ Maryland, Ctr Sci Computat & Math Modeling, College Pk, MD 20742 USA
关键词
Navier-Stokes equations; Free Boundary; Surface Tension; WATER-WAVE PROBLEM; WELL-POSEDNESS; SOBOLEV SPACES;
D O I
10.3934/dcds.2011.29.769
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the incompressible Navier-Stokes equations on a moving domain in R-3 of finite depth, bounded above by the free surface and bounded below by a solid flat bottom. We prove that there exists a unique, global-in-time solution to the problem provided that the initial velocity field and the initial profile of the boundary are sufficiently small in Sobolev spaces.
引用
收藏
页码:769 / 801
页数:33
相关论文
共 22 条
[1]  
Adams R., 1985, Sobolev Spaces
[2]  
Ambrose DM, 2007, COMMUN MATH SCI, V5, P391
[4]  
BEALE JT, 1984, ARCH RATION MECH AN, V84, P307
[5]  
COUTAND D, ARXIVMATH0212116
[6]   Well-posedness of the free-surface incompressible Euler equations with or without surface tension [J].
Coutand, Daniel ;
Shkoller, Steve .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 20 (03) :829-930
[7]   The modulational regime of three-dimensional water waves and the Davey-Stewartson system [J].
Craig, W ;
Schanz, U ;
Sulem, C .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1997, 14 (05) :615-667
[8]  
DANCHIN R, 2008, REV MAT IBEROAM, V21, P863
[10]   Well-posedness of the water-waves equations [J].
Lannes, D .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 18 (03) :605-654