Machine learning techniques to predict different levels of hospital care of CoVid-19

被引:11
|
作者
Hernandez-Pereira, Elena [1 ]
Fontenla-Romero, Oscar [1 ]
Bolon-Canedo, Veronica [1 ]
Cancela-Barizo, Brais [1 ]
Guijarro-Berdinas, Bertha [1 ]
Alonso-Betanzos, Amparo [1 ]
机构
[1] Univ A Coruna, CITIC Res & Dev Lab Artificial Intelligence LIDIA, Fac Informat, Campus Elvina S-N, La Coruna, Spain
关键词
CoVid-19; Machine learning; Supervised classification; Feature selection;
D O I
10.1007/s10489-021-02743-2
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this study, we analyze the capability of several state of the art machine learning methods to predict whether patients diagnosed with CoVid-19 (CoronaVirus disease 2019) will need different levels of hospital care assistance (regular hospital admission or intensive care unit admission), during the course of their illness, using only demographic and clinical data. For this research, a data set of 10,454 patients from 14 hospitals in Galicia (Spain) was used. Each patient is characterized by 833 variables, two of which are age and gender and the other are records of diseases or conditions in their medical history. In addition, for each patient, his/her history of hospital or intensive care unit (ICU) admissions due to CoVid-19 is available. This clinical history will serve to label each patient and thus being able to assess the predictions of the model. Our aim is to identify which model delivers the best accuracies for both hospital and ICU admissions only using demographic variables and some structured clinical data, as well as identifying which of those are more relevant in both cases. The results obtained in the experimental study show that the best models are those based on oversampling as a preprocessing phase to balance the distribution of classes. Using these models and all the available features, we achieved an area under the curve (AUC) of 76.1% and 80.4% for predicting the need of hospital and ICU admissions, respectively. Furthermore, feature selection and oversampling techniques were applied and it has been experimentally verified that the relevant variables for the classification are age and gender, since only using these two features the performance of the models is not degraded for the two mentioned prediction problems.
引用
收藏
页码:6413 / 6431
页数:19
相关论文
共 50 条
  • [31] Role of Machine Learning Techniques to Tackle the COVID-19 Crisis: Systematic Review
    Syeda, Hafsa Bareen
    Syed, Mahanazuddin
    Sexton, Kevin Wayne
    Syed, Shorabuddin
    Begum, Salma
    Syed, Farhanuddin
    Prior, Fred
    Yu, Feliciano, Jr.
    JMIR MEDICAL INFORMATICS, 2021, 9 (01)
  • [32] Community detection using unsupervised machine learning techniques on COVID-19 dataset
    Laxmi Chaudhary
    Buddha Singh
    Social Network Analysis and Mining, 2021, 11
  • [33] A survey of machine learning techniques for detecting and diagnosing COVID-19 from imaging
    Panday, Aishwarza
    Kabir, Muhammad Ashad
    Chowdhury, Nihad Karim
    QUANTITATIVE BIOLOGY, 2022, 10 (02) : 188 - 207
  • [34] Community detection using unsupervised machine learning techniques on COVID-19 dataset
    Chaudhary, Laxmi
    Singh, Buddha
    SOCIAL NETWORK ANALYSIS AND MINING, 2021, 11 (01)
  • [35] Using machine learning algorithms to predict COVID-19 vaccine uptake: A year after the introduction of COVID-19 vaccines in Ghana
    Dodoo, Cornelius C.
    Hanson-Yamoah, Ebo
    Adedia, David
    Erzuah, Irene
    Yamoah, Peter
    Brobbey, Fareeda
    Cobbold, Constance
    Mensah, Josephine
    VACCINE: X, 2024, 18
  • [36] Predicting COVID-19 Severity Integrating RNA-Seq Data Using Machine Learning Techniques
    Bajo-Morales, Javier
    Castillo-Secilla, Daniel
    Herrera, Luis Javier
    Caba, Octavio
    Prados, Jose Carlos
    Rojas, Ignacio
    CURRENT BIOINFORMATICS, 2023, 18 (03) : 221 - 231
  • [37] Utilization of machine-learning models to accurately predict the risk for critical COVID-19
    Assaf, Dan
    Gutman, Ya'ara
    Neuman, Yair
    Segal, Gad
    Amit, Sharon
    Gefen-Halevi, Shiraz
    Shilo, Noya
    Epstein, Avi
    Mor-Cohen, Ronit
    Biber, Asaf
    Rahav, Galia
    Levy, Itzchak
    Tirosh, Amit
    INTERNAL AND EMERGENCY MEDICINE, 2020, 15 (08) : 1435 - 1443
  • [38] Development of a machine learning algorithm to predict intubation among hospitalized patients with COVID-19
    Arvind, Varun
    Kim, Jun S.
    Cho, Brian H.
    Geng, Eric
    Cho, Samuel K.
    JOURNAL OF CRITICAL CARE, 2021, 62 : 25 - 30
  • [39] Utilization of machine-learning models to accurately predict the risk for critical COVID-19
    Dan Assaf
    Ya’ara Gutman
    Yair Neuman
    Gad Segal
    Sharon Amit
    Shiraz Gefen-Halevi
    Noya Shilo
    Avi Epstein
    Ronit Mor-Cohen
    Asaf Biber
    Galia Rahav
    Itzchak Levy
    Amit Tirosh
    Internal and Emergency Medicine, 2020, 15 : 1435 - 1443
  • [40] A robust and parsimonious machine learning method to predict ICU admission of COVID-19 patients
    Famiglini, Lorenzo
    Campagner, Andrea
    Carobene, Anna
    Cabitza, Federico
    MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2022,