Some Identities of Bernoulli Numbers and Polynomials Associated with Bernstein Polynomials

被引:3
作者
Kim, Min-Soo [2 ]
Kim, Taekyun [1 ]
Lee, Byungje [3 ]
Ryoo, Cheon-Seoung [4 ]
机构
[1] Kwangwoon Univ, Div Gen Educ Math, Seoul 139701, South Korea
[2] Korea Adv Inst Sci & Technol, Dept Math, Taejon 305701, South Korea
[3] Kwangwoon Univ, Dept Wireless Commun Engn, Seoul 139701, South Korea
[4] Hannam Univ, Dept Math, Taejon 306791, South Korea
关键词
Prime Number; Algebraic Closure; Basis Polynomial; Bernstein Polynomial; Bernoulli Number;
D O I
10.1155/2010/305018
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate some interesting properties of the Bernstein polynomials related to the bosonic p-adic integrals on Z(p).
引用
收藏
页数:7
相关论文
共 50 条
[41]   Bernoulli and Euler Polynomials in Two Variables [J].
Pita-Ruiz, Claudio .
KYUNGPOOK MATHEMATICAL JOURNAL, 2024, 64 (01) :133-159
[42]   Two closed forms for the Bernoulli polynomials [J].
Qi, Feng ;
Chapman, Robin J. .
JOURNAL OF NUMBER THEORY, 2016, 159 :89-100
[43]   Operational matrices of Bernstein polynomials and their applications [J].
Yousefi, S. A. ;
Behroozifar, M. .
INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2010, 41 (06) :709-716
[44]   A note on q-Bernstein polynomials [J].
T. Kim .
Russian Journal of Mathematical Physics, 2011, 18
[45]   Fast algorithm for composition of the Bernstein polynomials [J].
Feng, JQ ;
Peng, QS .
PROCEEDINGS OF THE 6TH INTERNATIONAL CONFERENCE ON COMPUTER AIDED DESIGN & COMPUTER GRAPHICS, 1999, :762-766
[46]   On the Symmetric Properties for the Generalized Twisted Bernoulli Polynomials [J].
Taekyun Kim ;
Young-Hee Kim .
Journal of Inequalities and Applications, 2009
[47]   LIMIT OF ITERATES FOR BERNSTEIN POLYNOMIALS DEFINED ON A TRIANGLE [J].
陈发来 ;
冯玉瑜 .
Applied Mathematics:A Journal of Chinese Universities, 1993, (01) :45-53
[48]   Approximation by Bernstein Polynomials at the Points of Discontinuity of the Derivatives [J].
Telyakovskii, S. A. .
MATHEMATICAL NOTES, 2009, 85 (3-4) :590-596
[49]   A de Casteljau algorithm for generalized Bernstein polynomials [J].
Phillips, GM .
BIT, 1997, 37 (01) :232-236
[50]   Approximation by Bernstein polynomials at the points of discontinuity of the derivatives [J].
S. A. Telyakovskii .
Mathematical Notes, 2009, 85 :590-596