Some Identities of Bernoulli Numbers and Polynomials Associated with Bernstein Polynomials

被引:3
作者
Kim, Min-Soo [2 ]
Kim, Taekyun [1 ]
Lee, Byungje [3 ]
Ryoo, Cheon-Seoung [4 ]
机构
[1] Kwangwoon Univ, Div Gen Educ Math, Seoul 139701, South Korea
[2] Korea Adv Inst Sci & Technol, Dept Math, Taejon 305701, South Korea
[3] Kwangwoon Univ, Dept Wireless Commun Engn, Seoul 139701, South Korea
[4] Hannam Univ, Dept Math, Taejon 306791, South Korea
来源
ADVANCES IN DIFFERENCE EQUATIONS | 2010年
关键词
Prime Number; Algebraic Closure; Basis Polynomial; Bernstein Polynomial; Bernoulli Number;
D O I
10.1155/2010/305018
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate some interesting properties of the Bernstein polynomials related to the bosonic p-adic integrals on Z(p).
引用
收藏
页数:7
相关论文
共 50 条
[31]   An Identity for Generalized Bernoulli Polynomials [J].
Chellal, Redha ;
Bencherif, Farid ;
Mehbali, Mohamed .
JOURNAL OF INTEGER SEQUENCES, 2020, 23 (11)
[32]   An identity of symmetry for the Bernoulli polynomials [J].
Yang, Sheng-Liang .
DISCRETE MATHEMATICS, 2008, 308 (04) :550-554
[33]   The approximation of localized Bernstein polynomials [J].
Xie, Linsen ;
Xie, Tingfan .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2008, 56 (04) :1040-1044
[34]   Bernstein Operators for Exponential Polynomials [J].
Aldaz, J. M. ;
Kounchev, O. ;
Render, H. .
CONSTRUCTIVE APPROXIMATION, 2009, 29 (03) :345-367
[35]   Asymptotics of differentiated Bernstein polynomials [J].
Impens, C ;
Vernaeve, H .
CONSTRUCTIVE APPROXIMATION, 2001, 17 (01) :47-57
[36]   An identity for multivariate Bernstein polynomials [J].
Jetter, K ;
Stöckler, J .
COMPUTER AIDED GEOMETRIC DESIGN, 2003, 20 (8-9) :563-577
[37]   Bernstein Operators for Exponential Polynomials [J].
J. M. Aldaz ;
O. Kounchev ;
H. Render .
Constructive Approximation, 2009, 29 :345-367
[38]   AN EXPLICIT FORMULA FOR BERNOULLI POLYNOMIALS IN TERMS OF r-STIRLING NUMBERS OF THE SECOND KIND [J].
Guo, Bai-Ni ;
Mezo, Istavan ;
Qi, Feng .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2016, 46 (06) :1919-1923
[39]   Super congruences concerning Bernoulli polynomials [J].
Sun, Zhi-Hong .
INTERNATIONAL JOURNAL OF NUMBER THEORY, 2015, 11 (08) :2393-2404
[40]   A new generalization of the Bernoulli and related polynomials [J].
H. M. Srivastava ;
M. Garg ;
S. Choudhary .
Russian Journal of Mathematical Physics, 2010, 17 :251-261