A model-selection approach to the VLSI design of vector quantizers

被引:0
|
作者
Bracco, M [1 ]
Ridella, S [1 ]
Zunino, R [1 ]
机构
[1] Univ Genoa, Dept Biophys & Elect Engn, DIBE, I-16145 Genoa, Italy
来源
PROCEEDINGS OF THE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS 2003, VOLS 1-4 | 2003年
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A formal methodology supports the design of digital devices for Hierarchical Vector Quantization (HVQ). A model-selection approach based on the Minimum Description Length criterion is enhanced by circuit-related aspects allowing efficient design. The resulting parameters drive the subsequent digital VLSI realization, which yields a HVQ chip providing cost-effective, computationally efficient real-time performances. Real-world applications support the consistency of the VQ approach and the effectiveness of the HVQ device.
引用
收藏
页码:959 / 964
页数:6
相关论文
共 50 条
  • [11] GRAMOFON: General model-selection framework based on networks
    Buza, Krisztian
    Nanopoulos, Alexandros
    Horvath, Tomas
    Schmidt-Thieme, Lars
    NEUROCOMPUTING, 2012, 75 (01) : 163 - 170
  • [12] DESIGN AND PERFORMANCE OF TREE-STRUCTURED VECTOR QUANTIZERS
    LIN, JH
    STORER, JA
    INFORMATION PROCESSING & MANAGEMENT, 1994, 30 (06) : 851 - 862
  • [13] Model-selection tests for conditional moment restriction models
    Hsu, Yu-Chin
    Shi, Xiaoxia
    ECONOMETRICS JOURNAL, 2017, 20 (01) : 52 - 85
  • [14] DESIGN AND PERFORMANCE OF TRELLIS VECTOR QUANTIZERS FOR SPEECH SIGNALS
    JUANG, BH
    IEEE TRANSACTIONS ON ACOUSTICS SPEECH AND SIGNAL PROCESSING, 1988, 36 (09): : 1423 - 1431
  • [15] A Model-Selection Framework for Concept-Drifting Data Streams
    Chen, Bo-Heng
    Chuang, Kun-Ta
    2014 INTERNATIONAL CONFERENCE ON DATA SCIENCE AND ADVANCED ANALYTICS (DSAA), 2014, : 290 - 296
  • [16] Graph-Based Model-Selection Framework for Large Ensembles
    Buza, Krisztian
    Nanopoulos, Alexandros
    Schmidt-Thieme, Lars
    HYBRID ARTIFICIAL INTELLIGENCE SYSTEMS, PT 1, 2010, 6076 : 557 - 564
  • [17] HiTIME: An efficient model-selection approach for the detection of unknown drug metabolites in LC-MS data
    Leeming, Michael G.
    Isaac, Andrew P.
    Zappia, Luke
    O'Hair, Richard A. J.
    Donald, William A.
    Pope, Bernard J.
    SOFTWAREX, 2020, 12
  • [18] Quantification of turbulence model-selection uncertainties considering discretization errors
    Chen J.
    Zhang C.
    Wu X.
    Zhao W.
    Zhao, Wei (ethnuaa@163.com), 1600, Chinese Society of Astronautics (42):
  • [19] A compression approach to support vector model selection
    von Luxburg, U
    Bousquet, O
    Schölkopf, B
    JOURNAL OF MACHINE LEARNING RESEARCH, 2004, 5 : 293 - 323
  • [20] Design of channel optimized vector quantizers in the presence of channel mismatch
    Jafarkhani, H
    Farvardin, N
    PROCEEDINGS OF THE 1998 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, VOLS 1-6, 1998, : 3465 - 3468