A topology-preserving level set method for shape optimization

被引:39
作者
Alexandrov, O [1 ]
Santosa, F [1 ]
机构
[1] Univ Minnesota, Sch Math, Minneapolis, MN 55455 USA
基金
美国国家科学基金会;
关键词
level set method; optimization; topology preservation; steepest descent method;
D O I
10.1016/j.jcp.2004.10.005
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The classical level set method, which represents the boundary of the unknown geometry as the zero-level set of a function, has been shown to be very effective in solving shape optimization problems. The present work addresses the issue of using a level set representation when there are simple geometrical and topological constraints. We propose a logarithmic barrier penalty which acts to enforce the constraints, leading to an approximate solution to shape design problems. (c) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:121 / 130
页数:10
相关论文
共 12 条
[1]   A level-set method for shape optimization [J].
Allaire, G ;
Jouve, F ;
Toader, AM .
COMPTES RENDUS MATHEMATIQUE, 2002, 334 (12) :1125-1130
[2]  
[Anonymous], 2001, ADV DESIGN CONTROL
[3]   A topology preserving level set method for geometric deformable models [J].
Han, X ;
Xu, CY ;
Prince, JL .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2003, 25 (06) :755-768
[4]  
Nocedal J., 1999, NUMERICAL OPTIMIZATI, DOI [10.1007/b98874, DOI 10.1007/B98874]
[5]   FRONTS PROPAGATING WITH CURVATURE-DEPENDENT SPEED - ALGORITHMS BASED ON HAMILTON-JACOBI FORMULATIONS [J].
OSHER, S ;
SETHIAN, JA .
JOURNAL OF COMPUTATIONAL PHYSICS, 1988, 79 (01) :12-49
[6]  
Osher S, 2003, APPL MATH SCI, V153, DOI DOI 10.1007/B98879
[7]   Level set methods for optimization problems involving geometry and constraints I. Frequencies of a two-density inhomogeneous drum [J].
Osher, SJ ;
Santosa, F .
JOURNAL OF COMPUTATIONAL PHYSICS, 2001, 171 (01) :272-288
[8]   A remark on computing distance functions [J].
Russo, G ;
Smereka, P .
JOURNAL OF COMPUTATIONAL PHYSICS, 2000, 163 (01) :51-67
[9]   Structural boundary design via level set and immersed interface methods [J].
Sethian, JA ;
Wiegmann, A .
JOURNAL OF COMPUTATIONAL PHYSICS, 2000, 163 (02) :489-528
[10]  
Sethian JA, 1999, CAMBRIDGE MONOGRAPHS, V3