Mittag-Leffler stability analysis of a class of homogeneous fractional systems

被引:3
|
作者
Fajraoui, Tarek [1 ]
Ghanmi, Boulbaba [1 ]
Mabrouk, Fehmi [1 ]
Omri, Faouzi [1 ]
机构
[1] Univ Gafsa, Fac Sci Gafsa, Dept Math, Univ Campus Sidi Ahmed Zarroug, Gafsa 2112, Tunisia
关键词
homogeneous fractional systems; Lyapunov homogeneous function; MittagLeffler stability; UNIFORM STABILITY; APPROXIMATIONS;
D O I
10.24425/acs.2021.137424
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we start by the research of the existence of Lyapunov homogeneous function for a class of homogeneous fractional Systems, then we shall prove that local and global behaviors are the same. The uniform Mittag-Leffler stability of homogeneous fractional time-varying systems is studied. A numerical example is given to illustrate the efficiency of the obtained results.
引用
收藏
页码:401 / 415
页数:15
相关论文
共 50 条
  • [11] Mittag-Leffler stability for a fractional viscoelastic telegraph problem
    Tatar, Nasser-eddine
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (18) : 14184 - 14205
  • [12] Mittag-Leffler stability of numerical solutions to linear homogeneous time fractional parabolic equations
    Dong, Wen
    Wang, Dongling
    NETWORKS AND HETEROGENEOUS MEDIA, 2023, 18 (03) : 946 - 956
  • [13] ADAPTIVE MITTAG-LEFFLER STABILIZATION OF A CLASS OF FRACTIONAL ORDER UNCERTAIN NONLINEAR SYSTEMS
    Wang, Qiao
    Zhang, Jianliang
    Ding, Dongsheng
    Qi, Donglian
    ASIAN JOURNAL OF CONTROL, 2016, 18 (06) : 2343 - 2351
  • [14] Mittag-Leffler stability and bifurcation of a nonlinear fractional model with relapse
    Lahrouz, Aadil
    Hajjami, Riane
    El Jarroudi, Mustapha
    Settati, Adel
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2021, 386 (386)
  • [15] Generalized Mittag-Leffler Input Stability of the Fractional Differential Equations
    Sene, Ndolane
    Srivastava, Gautam
    SYMMETRY-BASEL, 2019, 11 (05):
  • [16] Mittag-Leffler Stability for Impulsive Caputo Fractional Differential Equations
    Agarwal, R.
    Hristova, S.
    O'Regan, D.
    DIFFERENTIAL EQUATIONS AND DYNAMICAL SYSTEMS, 2021, 29 (03) : 689 - 705
  • [17] MITTAG-LEFFLER STABILITY OF IMPULSIVE DIFFERENTIAL EQUATIONS OF FRACTIONAL ORDER
    Stamova, Ivanka M.
    QUARTERLY OF APPLIED MATHEMATICS, 2015, 73 (03) : 525 - 535
  • [18] Mittag-Leffler stability for a fractional Euler-Bernoulli problem
    Tatar, Nasser-eddine
    CHAOS SOLITONS & FRACTALS, 2021, 149
  • [19] Mittag-Leffler Stability of Impulsive Nonlinear Fractional-Order Systems with Time Delays
    Mathiyalagan, K.
    Ma, Yong-Ki
    IRANIAN JOURNAL OF SCIENCE, 2023, 47 (01) : 99 - 108
  • [20] Robust Mittag-Leffler stabilisation of fractional-order systems
    Jonathan Munoz-Vazquez, Aldo
    Parra-Vega, Vicente
    Sanchez-Orta, Anand
    Martinez-Reyes, Fernando
    ASIAN JOURNAL OF CONTROL, 2020, 22 (06) : 2273 - 2281