Tunable transparency and amplification in a hybrid optomechanical system with quadratic coupling

被引:5
作者
Jiang, Cheng [1 ,2 ]
Cui, Yuanshun [1 ]
Zhai, Zhangyin [1 ]
Yu, Hualing [1 ]
Li, Xiaowei [1 ]
Chen, Guibin [1 ]
机构
[1] Huaiyin Normal Univ, Phys Dept, Jiangsu Key Lab Modern Measurement Technol & Inte, Huaian 223300, Peoples R China
[2] Beijing Computat Sci Res Ctr, Beijing 100193, Peoples R China
关键词
transparency and amplification; optomechanical system; quadratic coupling; ELECTROMAGNETICALLY INDUCED TRANSPARENCY; SLOW LIGHT; MOTION; CAVITY; ENTANGLEMENT;
D O I
10.1088/1361-6455/ab406e
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We theoretically study the optical response of a hybrid optomechanical system with quadratic coupling, where an optomechanical cavity with a movable membrane in the middle is coupled to an auxiliary cavity with a tunable gain rate. We show that the optical transmission of the system can be controlled by a variety of parameters, including power of the control field, coupling strength between the two cavities, the gain rate of the auxiliary cavity, reflectivity of the membrane, and the temperature of the environment. In particular, tunable transparency and amplification can be realized by modifying the gain rate of the auxiliary cavity. Under the condition of two-phonon resonance, we find that (i) for the no-loss-gain cavity, a broad transparency window appears in the probe transmission due to the coupling between the two cavities; (ii) for the passive cavity, an extremely narrow transparency window occurs within a broad transmission window due to quadratic optomechanical coupling; (iii) for the active cavity, the probe field can be amplified in a wide frequency regime. Our proposal provides a new platform to control the propagation of light.
引用
收藏
页数:9
相关论文
共 71 条
[1]   Optomechanical systems as single-photon routers [J].
Agarwal, G. S. ;
Huang, Sumei .
PHYSICAL REVIEW A, 2012, 85 (02)
[2]   Electromagnetically induced transparency in mechanical effects of light [J].
Agarwal, G. S. ;
Huang, Sumei .
PHYSICAL REVIEW A, 2010, 81 (04)
[3]   Robust stationary mechanical squeezing in a kicked quadratic optomechanical system [J].
Asjad, M. ;
Agarwal, G. S. ;
Kim, M. S. ;
Tombesi, P. ;
Di Giuseppe, G. ;
Vitali, D. .
PHYSICAL REVIEW A, 2014, 89 (02)
[4]   Cavity optomechanics [J].
Aspelmeyer, Markus ;
Kippenberg, Tobias J. ;
Marquardt, Florian .
REVIEWS OF MODERN PHYSICS, 2014, 86 (04) :1391-1452
[5]   Mechanical on-chip microwave circulator [J].
Barzanjeh, S. ;
Wulf, M. ;
Peruzzo, M. ;
Kalaee, M. ;
Dieterle, P. B. ;
Painter, O. ;
Fink, J. M. .
NATURE COMMUNICATIONS, 2017, 8
[6]   Nonreciprocal reconfigurable microwave optomechanical circuit [J].
Bernier, N. R. ;
Toth, L. D. ;
Koottandavida, A. ;
Ioannou, M. A. ;
Malz, D. ;
Nunnenkamp, A. ;
Feofanov, A. K. ;
Kippenberg, T. J. .
NATURE COMMUNICATIONS, 2017, 8
[7]   Nonlinear optomechanical measurement of mechanical motion [J].
Brawley, G. A. ;
Vanner, M. R. ;
Larsen, P. E. ;
Schmid, S. ;
Boisen, A. ;
Bowen, W. P. .
NATURE COMMUNICATIONS, 2016, 7
[8]   Laser cooling of a nanomechanical oscillator into its quantum ground state [J].
Chan, Jasper ;
Mayer Alegre, T. P. ;
Safavi-Naeini, Amir H. ;
Hill, Jeff T. ;
Krause, Alex ;
Groeblacher, Simon ;
Aspelmeyer, Markus ;
Painter, Oskar .
NATURE, 2011, 478 (7367) :89-92
[9]  
Chang L, 2014, NAT PHOTONICS, V8, P524, DOI [10.1038/nphoton.2014.133, 10.1038/NPHOTON.2014.133]
[10]   Slow light in a cavity optomechanical system with a Bose-Einstein condensate [J].
Chen, Bin ;
Jiang, Cheng ;
Zhu, Ka-Di .
PHYSICAL REVIEW A, 2011, 83 (05)