Biomimetic, Hypoxia-Responsive Nanoparticles Overcome Residual Chemoresistant Leukemic Cells with Co-Targeting of Therapy-Induced Bone Marrow Niches

被引:46
作者
Dong, Xiao [1 ,2 ]
Mu, Li-Li [3 ]
Liu, Xue-Liang [1 ,2 ]
Zhu, Hua [4 ]
Yang, Si-Cong [1 ,2 ]
Lai, Xing [1 ,2 ]
Liu, Hai-Jun [1 ,2 ]
Feng, Hai-Yi [1 ,2 ]
Lu, Qin [1 ,2 ]
Zhou, Bin-Bing S. [1 ,2 ]
Chen, Hong-Zhuan [5 ]
Chen, Guo-Qiang [6 ]
Lovell, Jonathan F. [7 ]
Hong, Deng-Li [3 ]
Fang, Chao [1 ,2 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Med, Hongqiao Int Inst Med, Tongren Hosp, Shanghai 200025, Peoples R China
[2] Shanghai Jiao Tong Univ, Sch Med, Dept Pharmacol & Chem Biol, Inst Med Sci, Shanghai 200025, Peoples R China
[3] SJTU SM, Key Lab Cell Differentiat & Apoptosis, Shanghai Key Lab Reprod Med, Minist Educ,Shanghai Inst Hematol,Ruijin Hosp,Dep, Shanghai 200025, Peoples R China
[4] SJTU SM, Key Lab Pediat Hematol & Oncol, Dept Hematol Oncol, Minist Hlth,Shanghai Childrens Med Ctr, Shanghai 200025, Peoples R China
[5] Shanghai Univ Tradit Chinese Med, Inst Interdisciplinary Integrat Biomed Res, Shanghai 201210, Peoples R China
[6] SJTU SM, Key Lab Cell Differentiat & Apoptosis, Minist Educ, Dept Pathophysiol, Shanghai 200025, Peoples R China
[7] Univ Buffalo State Univ New York, Dept Biomed Engn, Buffalo, NY 14260 USA
基金
中国国家自然科学基金;
关键词
bone marrow; hypoxia responsive; leukemia; nanoparticles; niche; DRUG-DELIVERY; STEM-CELLS; FACTOR-I; CXCR4;
D O I
10.1002/adfm.202000309
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Chemoresistance conferred by leukemia propagating cells (LPCs) in a therapy-induced niche (TI-niche) within the bone marrow is one of the main obstacles in leukemia treatment. Effective approaches to circumvent the TI-niche protection and to eliminate the resident LPCs remain to be exploited. Here, developed is a niche-targeted nanosystem using leukemic cell membrane-coated mesoporous silica nanoparticles (DA(azo)@CMSN) for co-delivering daunorubicin for leukemia cell chemotherapy and a TGF beta RII neutralizing antibody (aTGF beta RII) to block niche signaling. DA(azo)@CMSN effectively targets the TI-niche. Through an azobenzene-based hypoxia-responsive linker, sequential delivery of the two active molecules overcomes niche-mediated chemoresistance, attenuates systemic burden, and prolongs survival in a mouse model of leukemia. This work demonstrates a proof-of-principle for biomimetic and microenvironment-activated multiplexed nanoparticulate drug delivery strategies for overcoming therapy-induced chemoresistance in leukemia.
引用
收藏
页数:13
相关论文
共 69 条
[1]   Enhanced Antitumor Activity of the Photosensitizer meso-Tetra(N-methyl-4-pyridyl) Porphine Tetra Tosylate through Encapsulation in Antibody-Targeted Chitosan/Alginate Nanoparticles [J].
Abdelghany, Sharif M. ;
Schmid, Daniela ;
Deacon, Jill ;
Jaworski, Jakub ;
Fay, Francois ;
McLaughlin, Kirsty M. ;
Gormley, Julie A. ;
Burrows, James F. ;
Longley, Daniel B. ;
Donnelly, Ryan F. ;
Scott, Christopher J. .
BIOMACROMOLECULES, 2013, 14 (02) :302-310
[2]   Mesenchymal Niche-Specific Expression of Cxcl12 Controls Quiescence of Treatment-Resistant Leukemia Stem Cells [J].
Agarwal, Puneet ;
Isringhausen, Stephan ;
Li, Hui ;
Paterson, Andrew J. ;
He, Jianbo ;
Gomariz, Alvaro ;
Nagasawa, Takashi ;
Nombela-Arrieta, Cesar ;
Bhatia, Ravi .
CELL STEM CELL, 2019, 24 (05) :769-+
[3]   Enhanced antiproliferative activity of Herceptin (HER2)-conjugated gemcitabine-loaded chitosan nanoparticle in pancreatic cancer therapy [J].
Arya, Geetanjali ;
Vandana, Mallaredy ;
Acharya, Sarbari ;
Sahoo, Sanjeeb K. .
NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE, 2011, 7 (06) :859-870
[4]   Combination of Imatinib with CXCR4 Antagonist BKT140 Overcomes the Protective Effect of Stroma and Targets CML In Vitro and In Vivo [J].
Beider, Katia ;
Darash-Yahana, Merav ;
Blaier, Orly ;
Koren-Michowitz, Maya ;
Abraham, Michal ;
Wald, Hanna ;
Wald, Ori ;
Galun, Eithan ;
Eizenberg, Orly ;
Peled, Amnon ;
Nagler, Arnon .
MOLECULAR CANCER THERAPEUTICS, 2014, 13 (05) :1155-1169
[5]   Hypoxia-Activated Prodrug TH-302 Targets Hypoxic Bone Marrow Niches in Preclinical Leukemia Models [J].
Benito, Juliana ;
Ramirez, Marc S. ;
Millward, Niki Zacharias ;
Velez, Juliana ;
Harutyunyan, Karine G. ;
Lu, Hongbo ;
Shi, Yue-Xi ;
Matre, Polina ;
Jacamo, Rodrigo ;
Ma, Helen ;
Konoplev, Sergej ;
McQueen, Teresa ;
Volgin, Andrei ;
Protopopova, Marina ;
Mu, Hong ;
Lee, Jaehyuk ;
Bhattacharya, Pratip K. ;
Marszalek, Joseph R. ;
Davis, R. Eric ;
Bankson, James A. ;
Cortes, Jorge E. ;
Hart, Charles P. ;
Andreeff, Michael ;
Konopleva, Marina .
CLINICAL CANCER RESEARCH, 2016, 22 (07) :1687-1698
[6]   Bridging Bio-Nano Science and Cancer Nanomedicine [J].
Bjornmalm, Mattias ;
Thurecht, Kristofer J. ;
Michael, Michael ;
Scott, Andrew M. ;
Caruso, Frank .
ACS NANO, 2017, 11 (10) :9594-9613
[7]  
Blair HA, 2018, DRUGS, V78, P1903, DOI 10.1007/s40265-018-1022-3
[8]   Prolonged intracellular accumulation of light-inducible nanoparticles in leukemia cells allows their remote activation [J].
Boto, Carlos ;
Quartin, Emanuel ;
Cai, Yijun ;
Martin-Lorenzo, Alberto ;
Garcia Cenador, Maria Begona ;
Pinto, Sandra ;
Gupta, Rajeev ;
Enver, Tariq ;
Sanchez-Garcia, Isidro ;
Hong, Dengli ;
das Neves, Ricardo Pires ;
Ferreira, Lino .
NATURE COMMUNICATIONS, 2017, 8
[9]   Effects of the chemokine stromal cell-derived factor-1 on the migration and localization of precursor-B acute lymphoblastic leukemia cells within bone marrow stromal layers [J].
Bradstock, KF ;
Makrynikola, V ;
Bianchi, A ;
Shen, W ;
Hewson, J ;
Gottlieb, DJ .
LEUKEMIA, 2000, 14 (05) :882-888
[10]   CXCR4 antagonists: targeting the microenvironment in leukemia and other cancers [J].
Burger, J. A. ;
Peled, A. .
LEUKEMIA, 2009, 23 (01) :43-52