Putative zinc-sensing zinc fingers of metal-response element-binding transcription factor-1 stabilize a metal-dependent chromatin complex on the endogenous metallothionein-I promoter

被引:42
作者
Jiang, HM [1 ]
Daniels, PJ [1 ]
Andrews, GK [1 ]
机构
[1] Univ Kansas, Med Ctr, Dept Biochem & Mol Biol, Kansas City, KS 66160 USA
关键词
D O I
10.1074/jbc.M303598200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The metalloregulatory functions of metal-response element-binding transcription factor-1 (MTF-1) have been mapped, in part, to its six highly conserved zinc fingers. Here we examined the ability of zinc finger deletion mutants of mouse MTF-1 to regulate the endogenous metallothionein-I (MT-I) gene in cells lacking endogenous MTF-1. MTF-1 knockout mouse embryo fibroblasts were transfected with expression vectors for FLAG-tagged MTF-1 (MTF-1(flag)) or finger deletion mutants of MTF-1(flag) and then assayed for metal induction of MT-I gene expression, nuclear translocation, and in vitro DNA-binding activity of MTF-1 and its stable association with the endogenous chromosomal MT-I promoter. Intact MTF-1(flag) restored metal responsiveness of the MT-I gene, underwent nuclear translocation, displayed increased in vitro DNA binding in response to zinc and less so to cadmium, and rapidly formed a stable complex with the MT-I promoter chromatin in response to both of these metals. In contrast, although deletion of finger 1, fingers 5 and 6, or finger 6 only had variable effects on the nuclear localization and in vitro DNA-binding activity of MTF-1, each of these finger-deletion mutants severely attenuated metal-induced MTF-1 binding to the MT-I promoter chromatin and activation of the endogenous MT-I gene. These results demonstrated that the metal-induced recruitment of MTF-1 to the MT-I promoter is a rate-limiting step in its metalloregulatory function and that an intact zinc finger domain is required for this recruitment. During the course of these studies, it was discovered that mouse MTF-1 is polymorphic. The impact of these polymorphisms on MTF-1 metalloregulatory functions is discussed.
引用
收藏
页码:30394 / 30402
页数:9
相关论文
共 43 条
[1]   BUTYRATE SELECTIVELY ACTIVATES THE METALLOTHIONEIN GENE IN TERATOCARCINOMA CELLS AND INDUCES HYPERSENSITIVITY TO METAL INDUCTION [J].
ANDREWS, GK ;
ADAMSON, ED .
NUCLEIC ACIDS RESEARCH, 1987, 15 (13) :5461-5475
[2]   Cellular zinc sensors: MTF-1 regulation of gene expression [J].
Andrews, GK .
BIOMETALS, 2001, 14 (3-4) :223-237
[3]   The transcription factors MTF-1 and USF1 cooperate to regulate mouse metallothionein-1 expression in response to the essential metal zinc in visceral endoderm cells during early development [J].
Andrews, GK ;
Lee, DK ;
Ravindra, R ;
Lichtlen, P ;
Sirito, M ;
Sawadogo, M ;
Schaffner, W .
EMBO JOURNAL, 2001, 20 (05) :1114-1122
[4]   Ratiometric pulsed Alkylation/Mass spectrometry of the cysteine pairs in individual zinc fingers of MRE-Binding transcription factor-1 (MTF-1) as a probe of zinc chelate stability [J].
Apuy, JL ;
Chen, XH ;
Russell, DH ;
Baldwin, TO ;
Giedroc, DP .
BIOCHEMISTRY, 2001, 40 (50) :15164-15175
[5]   The DNA binding activity of metal response element-binding transcription factor-1 is activated in vivo and in vitro by zinc, but not by other transition metals [J].
Bittel, D ;
Dalton, T ;
Samson, SLA ;
Gedamu, L ;
Andrews, GK .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (12) :7127-7133
[6]   Functional heterogeneity in the zinc fingers of metalloregulatory protein metal response element-binding transcription factor-1 [J].
Bittel, DC ;
Smirnova, IV ;
Andrews, GK .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (47) :37194-37201
[7]   c-Myc target gene specificity is determined by a post-DNA-binding mechanism [J].
Boyd, KE ;
Wells, J ;
Gutman, J ;
Bartley, SM ;
Farnham, PJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (23) :13887-13892
[8]   Regulation of hormone-induced histone hyperacetylation and gene activation via acetylation of an acetylase [J].
Chen, HW ;
Lin, RJ ;
Xie, W ;
Wilpitz, D ;
Evans, RM .
CELL, 1999, 98 (05) :675-686
[9]   MRE-binding transcription factor-1: Weak zinc-binding finger domains 5 and 6 modulate the structure, affinity, and specificity of the metal-response element complex [J].
Chen, XH ;
Chu, MH ;
Giedroc, DP .
BIOCHEMISTRY, 1999, 38 (39) :12915-12925
[10]   Structural and functional heterogeneity among the zinc fingers of human MRE-binding transcription factor-1 [J].
Chen, XH ;
Agarwal, A ;
Giedroc, DP .
BIOCHEMISTRY, 1998, 37 (32) :11152-11161