Compressed Sensing-Based Distributed Image Compression

被引:11
作者
Baig, Muhammad Yousuf [1 ]
Lai, Edmund M-K [2 ]
Punchihewa, Amal [3 ]
机构
[1] Massey Univ, Sch Engn & Adv Technol, Palmerston North, New Zealand
[2] Massey Univ, Sch Engn & Adv Technol, Auckland, New Zealand
[3] Asia Pacific Broadcasting Union, Kuala Lumpur 50614, Malaysia
来源
APPLIED SCIENCES-BASEL | 2014年 / 4卷 / 02期
关键词
distributed image coding; compressed sensing; SIGNAL RECOVERY; RECONSTRUCTION;
D O I
10.3390/app4020128
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In this paper, a new distributed block-based image compression method based on the principles of compressed sensing (CS) is introduced. The coding and decoding processes are performed entirely in the CS measurement domain. Image blocks are classified into key and non-key blocks and encoded at different rates. The encoder makes use of a new adaptive block classification scheme that is based on the mean square error of the CS measurements between blocks. At the decoder, a simple, but effective, side information generation method is used for the decoding of the non-key blocks. Experimental results show that our coding scheme achieves better results than existing CS-based image coding methods.
引用
收藏
页码:128 / 147
页数:20
相关论文
共 41 条
[1]   Bayesian Compressive Sensing Using Laplace Priors [J].
Babacan, S. Derin ;
Molina, Rafael ;
Katsaggelos, Aggelos K. .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2010, 19 (01) :53-63
[2]  
Baig Y., 2010, P 17 INT TEL C DOH Q, P917
[3]   IEEE-SPS and connexions - An open access education collaboration [J].
Baraniuk, Richard G. ;
Burrus, C. Sidney ;
Thierstein, E. Joel .
IEEE SIGNAL PROCESSING MAGAZINE, 2007, 24 (06) :6-+
[4]   A new TwIST: Two-step iterative shrinkage/thresholding algorithms for image restoration [J].
Bioucas-Dias, Jose M. ;
Figueiredo, Mario A. T. .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2007, 16 (12) :2992-3004
[5]   Signal recovery from random projections [J].
Candès, E ;
Romberg, J .
COMPUTATIONAL IMAGING III, 2005, 5674 :76-86
[6]   Robust uncertainty principles:: Exact signal reconstruction from highly incomplete frequency information [J].
Candès, EJ ;
Romberg, J ;
Tao, T .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (02) :489-509
[7]  
Candès EJ, 2008, IEEE SIGNAL PROC MAG, V25, P21, DOI 10.1109/MSP.2007.914731
[8]  
CHEN SB, 1994, CONF REC ASILOMAR C, P41, DOI 10.1109/ACSSC.1994.471413
[9]  
Chen SSB, 2001, SIAM REV, V43, P129, DOI [10.1137/S003614450037906X, 10.1137/S1064827596304010]
[10]  
Dikici C., 2005, P 13 EUR SIGN PROC C