Cobweb model with conformable fractional derivatives

被引:23
作者
Bohner, Martin [1 ]
Hatipoglu, Veysel Fuat [2 ,3 ]
机构
[1] Missouri Univ Sci & Technol, Dept Math & Stat, Rolla, MO USA
[2] Mugla Sitki Kocman Univ, Dept Business Adm, Fethiye, Mugla, Turkey
[3] Missouri S&T, Rolla, MO USA
关键词
cobweb model; conformable fractional derivative; fractional calculus;
D O I
10.1002/mma.4846
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, the cobweb model is reformulated in terms of fractional-order derivatives. In particular, we describe linear cobweb models in continuous time by using conformable fractional-order derivatives. Then, the general solutions as well as stability criteria for the proposed models are given. Moreover, the developed models are illustrated with some examples.
引用
收藏
页码:9010 / 9017
页数:8
相关论文
共 19 条
[1]   On conformable fractional calculus [J].
Abdeljawad, Thabet .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2015, 279 :57-66
[2]   New exact solution of generalized biological population model [J].
Acan, Omer ;
Al Qurashi, Maysaa Mohamed ;
Baleanu, Dumitru .
JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2017, 10 (07) :3916-3929
[3]  
[Anonymous], ADV DIFF EQ
[4]  
[Anonymous], 2012, FRACTIONAL CALCULUS, DOI DOI 10.1142/10044
[5]  
[Anonymous], 2014, MATH PROBL ENG, DOI DOI 10.1155/2014/107535
[6]  
[Anonymous], 1999, Fractional Differential Equations
[7]  
[Anonymous], 2017, COMPLEXITY
[8]   New properties of conformable derivative [J].
Atangana, Abdon ;
Baleanu, Dumitru ;
Alsaedi, Ahmed .
OPEN MATHEMATICS, 2015, 13 :889-898
[9]   A conformable fractional calculus on arbitrary time scales [J].
Benkhettou, Nadia ;
Hassani, Salima ;
Torres, Delfim F. M. .
JOURNAL OF KING SAUD UNIVERSITY SCIENCE, 2016, 28 (01) :93-98
[10]  
Boleantu M., 2008, DIFFERENTIAL GEOMETR, V10, P62