Estimation of soil physical properties using remote sensing and artificial neural network

被引:106
|
作者
Chang, DH [1 ]
Islam, S [1 ]
机构
[1] Univ Cincinnati, Cincinnati Earth Sci Program, Dept Civil & Environm Engn, Cincinnati, OH 45221 USA
关键词
D O I
10.1016/S0034-4257(00)00144-9
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Passive microwave remote sensing techniques have been successfully used to obtain spatial and multitemporal surface soil moisture data over large areas. Measurement of fine-resolution soil physical properties over large areas are, however, rarely available. In this study, we explore the possibility of inferring soil physical properties from a multitemporal remotely sensed brightness temperature and soil moisture maps. We construct two Artificial Neural Network models based on physical linkages among space-time distribution of brightness temperature, soil moisture, and soil media properties. Using a sequence of remotely data from Washita '92 experiment, we show that it is possible to infer soil texture from multitemporal brightness temperature and soil moisture data. (C) Elsevier Science Inc., 2000.
引用
收藏
页码:534 / 544
页数:11
相关论文
共 50 条
  • [31] Remote sensing of forest change using artificial neural networks
    Boston Univ, Boston, United States
    IEEE Trans Geosci Remote Sens, 2 (398-404):
  • [32] Estimation of regional evapotranspiration and biomass production from remote sensing data by artificial neural network (ANN) method
    Zheng, Xiangqun
    Shen, Fengju
    Zheng, Shunan
    Argaman, Eli
    Blumberg, Dan
    Ben-Asher, Jiftah
    Amir, Shira
    JOURNAL OF FOOD AGRICULTURE & ENVIRONMENT, 2012, 10 (3-4): : 1558 - 1561
  • [33] Artificial neural network for the estimation of soil moisture and surface roughness
    Abhishek Pandey
    S. K. Jha
    J. K. Srivastava
    R. Prasad
    Russian Agricultural Sciences, 2010, 36 (6) : 428 - 432
  • [34] Artificial Neural Networks and Remote Sensing
    Jensen, Ryan R.
    Hardin, Perry J.
    Yu, Genong
    GEOGRAPHY COMPASS, 2009, 3 (02): : 630 - 646
  • [36] Estimation of vegetation biophysical parameters by remote sensing using radial basis function neural network
    Xiao-hua Yang
    Jing-feng Huang
    Jian-wen Wang
    Xiu-zhen Wang
    Zhan-yu Liu
    Journal of Zhejiang University-SCIENCE A, 2007, 8 : 883 - 895
  • [37] Estimation of vegetation biophysical parameters by remote sensing using radial basis function neural network
    Yang Xiao-hua
    Huang Jing-feng
    Wang Jian-wen
    Wang Xiu-zhen
    Liu Zhan-yu
    JOURNAL OF ZHEJIANG UNIVERSITY-SCIENCE A, 2007, 8 (06): : 883 - 895
  • [38] Soil Heat Flux Modeling Using Artificial Neural Networks and Multispectral Airborne Remote Sensing Imagery
    Canelon, Dario J.
    Chavez, Jose L.
    REMOTE SENSING, 2011, 3 (08) : 1627 - 1643
  • [39] The Effect of Soil Physical and Chemical Properties on the Performance Indices of Artichoke's Leaf using Artificial Neural Network (ANN)
    Alizadeh, Azadeh
    Ghasemnezhad, Azim
    Hezarjaribi, Aboutaleb
    Aladdin, Mohammad Zaman
    JOURNAL OF MEDICINAL PLANTS AND BY-PRODUCTS-JMPB, 2024, 13 (01): : 123 - 135
  • [40] Soil texture classification with artificial neural networks operating on remote sensing data
    Zhai, Yushun
    Thomasson, J. Alex
    Boggess, Julian E., III
    Sui, Ruixiu
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2006, 54 (02) : 53 - 68