CATEGORIFICATION OF SEIDEL'S REPRESENTATION

被引:9
作者
Charette, Francosis [1 ]
Cornea, Octav [2 ]
机构
[1] Max Planck Inst Math, Vivatsgasse 7, D-53111 Bonn, Germany
[2] Univ Montreal, Dept Math & Stat, CP 6128 Succ Ctr Ville, Montreal, PQ H3C 3J7, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Modulus Space; Monoidal Category; Lagrangian Submanifolds; Fukaya Category; Monoidal Functor;
D O I
10.1007/s11856-015-1261-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Two natural symplectic constructions, the Lagrangian suspension and Seidel's quantum representation of the fundamental group of the group of Hamiltonian diffeomorphisms, Ham(M), with (M,omega) a monotone symplectic manifold, admit categorifications as actions of the fundamental groupoid Pi(Ham(M)) on a cobordism category recently introduced in [BC14] and, respectively, on a monotone variant of the derived Fukaya category. We show that the functor constructed in [BC14] that maps the cobordism category to the derived Fukaya category is equivariant with respect to these actions.
引用
收藏
页码:67 / 104
页数:38
相关论文
共 23 条
[1]   Loops of Lagrangian submanifolds and pseudoholomorphic discs [J].
Akveld, M ;
Salamon, D .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2001, 11 (04) :609-650
[2]  
[Anonymous], 1998, GRADUATE TEXTS MATH
[3]  
Arnol'd V., 1980, FUNKTSIONAL ANAL PRI, V14, P96
[4]  
Arnold V. I., 1980, FUNKTSIONAL ANAL PRI, V14, P1
[5]  
Arnold V. I., 1980, Anal. i Prilozhen., V14, P8
[6]   SOME CALCULATIONS OF LAGRANGIAN COBORDISM [J].
AUDIN, M .
ANNALES DE L INSTITUT FOURIER, 1985, 35 (03) :159-194
[7]   Lagrangian cobordism and Fukaya categories [J].
Biran, Paul ;
Cornea, Octav .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2014, 24 (06) :1731-1830
[8]  
Biran P, 2013, J AM MATH SOC, V26, P295
[9]   Rigidity and uniruling for Lagrangian submanifolds [J].
Biran, Paul ;
Cornea, Octav .
GEOMETRY & TOPOLOGY, 2009, 13 :2881-2989
[10]  
Charette F., 2012, THESIS