Fast Single-Image Super-Resolution via Deep Network With Component Learning

被引:38
|
作者
Xie, Chao [1 ,2 ]
Zeng, Weili [3 ]
Lu, Xiaobo [1 ,2 ]
机构
[1] Southeast Univ, Sch Automat, Nanjing 210096, Jiangsu, Peoples R China
[2] Southeast Univ, Key Lab Measurement & Control Complex Syst Engn, Minist Educ, Nanjing 210096, Jiangsu, Peoples R China
[3] Nanjing Univ Aeronaut & Astronaut, Coll Civil Aviat, Nanjing 210016, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Computational modeling; Image reconstruction; Training; Image resolution; Convolutional codes; Encoding; Single image super-resolution; component learning; deep convolutional neural networks; SPARSE REPRESENTATION; RECONSTRUCTION; SIMILARITY; ALGORITHM; LIMITS;
D O I
10.1109/TCSVT.2018.2883771
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Driven by the spectacular success of deep learning, several advanced models based on neural networks have recently been proposed for single-image super-resolution, incrementally revealing their superiority over their alternatives. In this paper, we pursue this latest line of research and present an improved network structure by taking advantage of the proposed component learning. The core idea and difference of this learning strategy are to use the residual extracted from the input to predict its counterpart in the corresponding output. To this end, a global decomposition procedure is designed on the basis of convolutional sparse coding and performed on the input for extracting the low-resolution (LR) residual component from it. Owing to the properties of this decomposition, the represented residual component still stays in the LR space so that the subsequent part is capable of operating it economically in terms of computational complexity. Thorough experimental results demonstrate the merit and effectiveness of the proposed component learning strategy, and our trained model outperforms many state-of-the-art methods in terms of both speed and reconstruction quality.
引用
收藏
页码:3473 / 3486
页数:14
相关论文
共 50 条
  • [41] Example-based learning for single-image super-resolution
    Kim, Kwang In
    Kwon, Younghee
    PATTERN RECOGNITION, 2008, 5096 : 456 - +
  • [42] Learning Hierarchical Decision Trees for Single-Image Super-Resolution
    Huang, Jun-Jie
    Siu, Wan-Chi
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2017, 27 (05) : 937 - 950
  • [43] A fast single-image super-resolution via directional edge-guided regularized extreme learning regression
    Paheding Sidike
    Evan Krieger
    M. Zahangir Alom
    Vijayan K. Asari
    Tarek Taha
    Signal, Image and Video Processing, 2017, 11 : 961 - 968
  • [44] A fast single-image super-resolution via directional edge-guided regularized extreme learning regression
    Sidike, Paheding
    Krieger, Evan
    Alom, M. Zahangir
    Asari, Vijayan K.
    Taha, Tarek
    SIGNAL IMAGE AND VIDEO PROCESSING, 2017, 11 (05) : 961 - 968
  • [45] A Practical Contrastive Learning Framework for Single-Image Super-Resolution
    Wu, Gang
    Jiang, Junjun
    Liu, Xianming
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (11) : 15834 - 15845
  • [46] Single-Image Super-Resolution for Remote Sensing Data Using Deep Residual-Learning Neural Network
    Huang, Ningbo
    Yang, Yong
    Liu, Junjie
    Gu, Xinchao
    Cai, Hua
    NEURAL INFORMATION PROCESSING (ICONIP 2017), PT II, 2017, 10635 : 622 - 630
  • [47] MADNet: A Fast and Lightweight Network for Single-Image Super Resolution
    Lan, Rushi
    Sun, Long
    Liu, Zhenbing
    Lu, Huimin
    Pang, Cheng
    Luo, Xiaonan
    IEEE TRANSACTIONS ON CYBERNETICS, 2021, 51 (03) : 1443 - 1453
  • [48] Deep Shearlet Residual Learning Network for Single Image Super-Resolution
    Geng, Tianyu
    Liu, Xiao-Yang
    Wang, Xiaodong
    Sun, Guiling
    IEEE Transactions on Image Processing, 2021, 30 : 4129 - 4142
  • [49] Deep Shearlet Residual Learning Network for Single Image Super-Resolution
    Geng, Tianyu
    Liu, Xiao-Yang
    Wang, Xiaodong
    Sun, Guiling
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 : 4129 - 4142
  • [50] Single image super-resolution via Image Quality Assessment-Guided Deep Learning Network
    Xiong, Zhengqiang
    Lin, Manhui
    Lin, Zhen
    Sun, Tao
    Yang, Guangyi
    Wang, Zhengxing
    PLOS ONE, 2020, 15 (10):