A first-principles study on uniaxial strain effects of nonplanar oxygen-functionalized armchair graphene nanoribbons

被引:6
|
作者
Qu, Li-Hua [1 ]
Zhang, Jian-Min [1 ]
Xu, Ke-Wei [2 ]
Ji, Vincent [3 ]
机构
[1] Shaanxi Normal Univ, Coll Phys & Informat Technol, Xian 710062, Shaanxi, Peoples R China
[2] Xian Univ Arts & Sci, Coll Phys & Mech & Elect Engn, Xian 710065, Peoples R China
[3] Univ Paris 11, ICMMO LEMHE, F-91405 Orsay, France
基金
中国国家自然科学基金;
关键词
Oxygen; Graphene nanoribbon; First-principles; MULTIWALLED CARBON NANOTUBES; INITIO MOLECULAR-DYNAMICS; TOTAL-ENERGY CALCULATIONS; THERMAL REDUCTION; SHEETS; STRENGTH; NANOCOMPOSITES; TRANSITION;
D O I
10.1016/j.jallcom.2015.01.099
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Based on extensive first-principles calculations, we report the equilibrium atomic configuration, mechanical and electronical properties of nonplanar oxygen-passivated armchair graphene nanoribbons (O-AGNRs) under uniaxial strain. We can get more stable and stiffer structures using uniaxial strain. The mechanical properties of the O-AGNRs such as Young's modulus exhibits nonlinear behavior with strain, and Poisson's ratio shows a decreasing trend with increasing tensile strain. In addition, under uniaxial strain the band gaps of the nonplanar O-AGNRs not only experience a transition between direct and indirect but also change their widths and can be classified into three families according to the ribbon width of 3n, 3n + 1, and 3n + 2. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:219 / 224
页数:6
相关论文
共 50 条
  • [31] A First-Principles Study on Edge Doping of Armchair Graphene Nanoribbon
    Lam, Kai Tak
    Liang, Gengchiau
    2008 2ND IEEE INTERNATIONAL NANOELECTRONICS CONFERENCE, VOLS 1-3, 2008, : 109 - 111
  • [32] A first-principles study on the electronic and magnetic properties of armchair SiC/AlN nanoribbons
    Du, Xiu-Juan
    Chen, Zheng
    Zhang, Jing
    Ning, Zhao-Rong
    Fan, Xiao-Li
    JOURNAL OF ALLOYS AND COMPOUNDS, 2014, 586 : 176 - 179
  • [33] First-principles study on controlling transport gap of graphene nanoribbons using hybrid Armchair-Zigzag nanostructures
    Nguyen Tien Cuong
    INTERNATIONAL JOURNAL OF COMPUTATIONAL MATERIALS SCIENCE AND ENGINEERING, 2022, 11 (02)
  • [34] Half-metallicity in armchair boron nitride nanoribbons: A first-principles study
    Rai, Hari Mohan
    Saxena, Shailendra K.
    Mishra, Vikash
    Late, Ravikiran
    Kumar, Rajesh
    Sagdeo, Pankaj R.
    Jaiswal, Neeraj K.
    Srivastava, Pankaj
    SOLID STATE COMMUNICATIONS, 2015, 212 : 19 - 24
  • [35] First-principles calculations of the optical response of single-layer and bilayer armchair graphene nanoribbons
    Ge, Yijun
    Fisher, Timothy S.
    FRONTIERS IN NANOTECHNOLOGY, 2022, 4
  • [36] First-principles Study for I-V Characteristics of Halogen Functionalized Zigzag Graphene Nanoribbons
    Patel, Chandrabhan
    Yogi, Rachana
    Jaiswal, Neeraj K.
    DAE SOLID STATE PHYSICS SYMPOSIUM 2018, 2019, 2115
  • [37] First-principles study for strain effects on oxygen migration in zirconium
    Liu, Liucheng
    Tu, Rui
    Chu, Linhua
    Li, Yingying
    Sun, Chen
    Shao, Dan
    Xiao, Wei
    COMPUTATIONAL MATERIALS SCIENCE, 2018, 144 : 345 - 354
  • [38] Quantum confinement effect in armchair graphene nanoribbons: Effect of strain on band gap modulation studied using first-principles calculations
    Loh, Siow Mean
    Huang, Yu-Hui
    Lin, Ken-Ming
    Su, W. S.
    Wu, B. R.
    Leung, T. C.
    PHYSICAL REVIEW B, 2014, 90 (03):
  • [39] Electrical and transport properties of twisted armchair graphene nanoribbons tailored by uniaxial strain
    Mohammadi, Amin
    Nazirfakhr, Maryam
    Shahhoseini, Ali
    2015 23RD IRANIAN CONFERENCE ON ELECTRICAL ENGINEERING (ICEE), 2015, : 1374 - 1377
  • [40] First-Principles Study of Heat Transport Properties of Graphene Nanoribbons
    Tan, Zhen Wah
    Wang, Jian-Sheng
    Gan, Chee Kwan
    NANO LETTERS, 2011, 11 (01) : 214 - 219