Conjugate field and fluctuation-dissipation relation for the dynamic phase transition in the two-dimensional kinetic Ising model

被引:58
作者
Robb, D. T. [1 ]
Rikvold, A.
Berger, A.
Novotny, M. A.
机构
[1] Florida State Univ, Sch Computat Sci, Tallahassee, FL 32306 USA
[2] Clarkson Univ, Dept Phys, Potsdam, NY 13699 USA
[3] Florida State Univ, Dept Phys, Tallahassee, FL 32306 USA
[4] Florida State Univ, Ctr Mat Res & Technol, Tallahassee, FL 32306 USA
[5] Natl High Magnet Field Lab, Tallahassee, FL 32310 USA
[6] San Jose Res Ctr, San Jose, CA 95120 USA
[7] Mississippi State Univ, Dept Phys & Astron, Mississippi State, MS 39762 USA
[8] Mississippi State Univ, HPC, Ctr Computat Sci, Mississippi State, MS 39762 USA
来源
PHYSICAL REVIEW E | 2007年 / 76卷 / 02期
关键词
D O I
10.1103/PhysRevE.76.021124
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The two-dimensional kinetic Ising model, when exposed to an oscillating applied magnetic field, has been shown to exhibit a nonequilibrium, second-order dynamic phase transition (DPT), whose order parameter Q is the period-averaged magnetization. It has been established that this DPT falls in the same universality class as the equilibrium phase transition in the two-dimensional Ising model in zero applied field. Here we study the scaling of the dynamic order parameter with respect to a nonzero, period-averaged, magnetic "bias" field, H-b, for a DPT produced by a square-wave applied field. We find evidence that the scaling exponent, delta(d), of H-b at the critical period of the DPT is equal to the exponent for the critical isotherm, delta(e), in the equilibrium Ising model. This implies that H-b is a significant component of the field conjugate to Q. A finite-size scaling analysis of the dynamic order parameter above the critical period provides further support for this result. We also demonstrate numerically that, for a range of periods and values of H-b in the critical region, a fluctuation-dissipation relation (FDR), with an effective temperature T-eff(T,P,H-0) depending on the period, and possibly the temperature and field amplitude, holds for the variables Q and H-b. This FDR justifies the use of the scaled variance of Q as a proxy for the nonequilibrium susceptibility, partial derivative < Q >/partial derivative H-b, in the critical region.
引用
收藏
页数:10
相关论文
共 47 条
[11]   MULTICANONICAL ALGORITHMS FOR 1ST ORDER PHASE-TRANSITIONS [J].
BERG, BA ;
NEUHAUS, T .
PHYSICS LETTERS B, 1991, 267 (02) :249-253
[12]   MULTICANONICAL ENSEMBLE - A NEW APPROACH TO SIMULATE 1ST-ORDER PHASE-TRANSITIONS [J].
BERG, BA ;
NEUHAUS, T .
PHYSICAL REVIEW LETTERS, 1992, 68 (01) :9-12
[13]   FINITE-SIZE SCALING AT 1ST-ORDER PHASE-TRANSITIONS [J].
BINDER, K ;
LANDAU, DP .
PHYSICAL REVIEW B, 1984, 30 (03) :1477-1485
[14]   Response of a model of CO oxidation with CO desorption and diffusion to a periodic external CO pressure [J].
Buendia, G. M. ;
Machado, E. ;
Rikvold, P. A. .
JOURNAL OF MOLECULAR STRUCTURE-THEOCHEM, 2006, 769 (1-3) :189-192
[15]   Dynamic transitions and hysteresis [J].
Chakrabarti, BK ;
Acharyya, M .
REVIEWS OF MODERN PHYSICS, 1999, 71 (03) :847-859
[16]   Competing field pulse induced dynamic transition in ising models [J].
Chatterjee, A ;
Chakrabarti, BK .
PHASE TRANSITIONS, 2004, 77 (5-7) :581-600
[17]   Fluctuation cumulant behavior for the field-pulse-induced magnetization-reversal transition in Ising models [J].
Chatterjee, A ;
Chakrabarti, BK .
PHYSICAL REVIEW E, 2003, 67 (04) :5
[18]  
Dutta SB, 2004, PHYS REV E, V69, DOI 10.1103/PhysRevE.69.066115
[19]   Dynamic phase transition in a time-dependent Ginzburg-Landau model in an oscillating field (vol E 63, art. no. 036109, 2001) [J].
Fujisaka, H ;
Tutu, H ;
Rikvold, PA .
PHYSICAL REVIEW E, 2001, 63 (05)
[20]   Dynamic phase transition in a time-dependent Ginzburg-Landau model in an oscillating field [J].
Fujisaka, H ;
Tutu, H ;
Rikvold, PA .
PHYSICAL REVIEW E, 2001, 63 (03)