Investigation of the failure behaviour of vertebral trabecular architectures under uni-axial compression and wedge action loading conditions

被引:12
|
作者
McDonnell, P. [1 ]
Harrison, N.
McHugh, P. E.
机构
[1] Natl Univ Ireland, Natl Ctr Biomed Engn Sci, Galway, Ireland
关键词
Cancellous bone; Osteoporosis; Rapid prototype; FINITE-ELEMENT MODELS; ELASTIC PROPERTIES; MECHANICAL-PROPERTIES; YIELD PROPERTIES; CANCELLOUS BONE; VOLUME FRACTION; TISSUE; STRENGTH; STRAIN; MAINTENANCE;
D O I
10.1016/j.medengphy.2010.02.005
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Vertebral wedge fractures are associated with combined compression and flexure loading and are the most common fracture type for human vertebrae. In this study, rapid prototype (RP) biomodels of human vertebral trabecular bone were mechanically tested under uni-axial compression loading and also under wedge action loading (combination of compression and flexure loading) to investigate the mode of failure and the ultimate loads that could be sustained under these different loading conditions. Two types of trabecular bone models were manufactured and tested: baseline models which were directly derived from mu CT scans of human thoracic vertebrae, and osteoporotic models which were generated from the baseline models using a custom-developed bone loss algorithm. The ultimate load for each model under compression and wedge action loading was determined and a video was recorded of each test so that failure mechanisms could be evaluated. The results of the RP model mechanical tests showed that the ultimate loads that could be supported by vertebral trabecular architectures under wedge action loading were less than those that could be supported under uni-axial compression loading by up to 26%. Also, the percentage reduction in strength from the baseline value due to osteoporotic bone loss was slightly less for the wedge action loading compared to uni-axial compression loading. Analysis of the videos for each test revealed that failure occurred in localised regions of the trabecular structure due to bending and buckling of thin vertical struts. These results suggest that vertebral trabecular bone is more susceptible to failure from wedge action loading compared to uni-axial compression loading, although this effect is not exacerbated by osteoporotic bone loss. (C) 2010 IPEM. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:569 / 576
页数:8
相关论文
共 4 条
  • [1] Failure prediction in glass fiber reinforced plastics laminates with drilled hole under uni-axial loading
    Rakesh, P. K.
    Singh, I.
    Kumar, D.
    MATERIALS & DESIGN, 2010, 31 (06) : 3002 - 3007
  • [2] Behaviour of CFRP confined square concrete-filled stainless steel tubular columns under uni-axial compression
    Tang, Hongyuan
    Wang, Huixiang
    Liu, Ye
    Sun, Xujie
    Huang, Xiaogang
    THIN-WALLED STRUCTURES, 2023, 183
  • [3] Anisotropic work hardening behaviour in duplex stainless steel under uni-axial loading: Interplay between phase morphology and crystallographic texture
    Chalapathi, Darshan
    Sivaprasad, P. V.
    Chai, Guocai
    Kanjarla, Anand K.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2022, 849
  • [4] Evaluation of the mechanical behaviour of brine + CO2 saturated brown coal under mono-cyclic uni-axial compression
    Sampath, K. H. S. M.
    Perera, M. S. A.
    Li, Dong-yin
    Ranjith, P. G.
    Matthai, S. K.
    ENGINEERING GEOLOGY, 2019, 263